5-4-2知识图谱推理-基于规则学习的知识图谱推理

利用图的结构实现关系推理:PRA

基于思想:将连接两个实体的路径作为特征来预测其间可能存在的关系。

基于规则学习的方法:AMIE

知识图谱中的规则可以用以下形式表示:

B1ΛB2Λ.....ΛBn=>H

其中B1ΛB2Λ.....ΛBn表示规则的body部分,有n个原子(atom)组成,H表示规则的head部分,由一个原子组成,每个原子A可以表示为A=r(x,y)形式,r表示原子包含的关系,x,y表示变量。

本demo中AMIE学习的规则为所有规则中的一个子集,即闭环的联通规则,也可以叫做路径规划:

r(x,z1)Λr2(z1,z2)Λ...rn(zn-1,y)=>r(x,y)

简化为B=>r0(x,y)

如果规则中的所有变量替换为具体的实体并保证每个实例化后的atom都存在图谱中,这样规则实例化后的结果成为规则的一个grounding。

规则的几个统计指标:

Support、HC、Confidence、PCA Confidence

借助表示学习来学习规则:

利用Embedding可以非常简便的计算关系的关系,也就是规则。

可微规则学习:NeuraLP:

提出了一个可微的一阶谓词逻辑规则学习模型。

可微规则学习:DRUM

可微规则学习:RuleE

规则与嵌入表示的迭代学习:IterE

相关推荐
人工智能AI技术6 小时前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡6 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣6 小时前
深度学习之对比学习
人工智能·深度学习·学习
AI_56786 小时前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜6006 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
檐下翻书1737 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416277 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented7 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie8 小时前
ADALog 日志异常检测
人工智能
Jouham8 小时前
教培获客破局:AI智能体如何重塑需求捕捉与转化新范式
人工智能