5-4-2知识图谱推理-基于规则学习的知识图谱推理

利用图的结构实现关系推理:PRA

基于思想:将连接两个实体的路径作为特征来预测其间可能存在的关系。

基于规则学习的方法:AMIE

知识图谱中的规则可以用以下形式表示:

B1ΛB2Λ.....ΛBn=>H

其中B1ΛB2Λ.....ΛBn表示规则的body部分,有n个原子(atom)组成,H表示规则的head部分,由一个原子组成,每个原子A可以表示为A=r(x,y)形式,r表示原子包含的关系,x,y表示变量。

本demo中AMIE学习的规则为所有规则中的一个子集,即闭环的联通规则,也可以叫做路径规划:

r(x,z1)Λr2(z1,z2)Λ...rn(zn-1,y)=>r(x,y)

简化为B=>r0(x,y)

如果规则中的所有变量替换为具体的实体并保证每个实例化后的atom都存在图谱中,这样规则实例化后的结果成为规则的一个grounding。

规则的几个统计指标:

Support、HC、Confidence、PCA Confidence

借助表示学习来学习规则:

利用Embedding可以非常简便的计算关系的关系,也就是规则。

可微规则学习:NeuraLP:

提出了一个可微的一阶谓词逻辑规则学习模型。

可微规则学习:DRUM

可微规则学习:RuleE

规则与嵌入表示的迭代学习:IterE

相关推荐
Juicedata37 分钟前
JuiceFS v1.3-Beta2:集成 Apache Ranger,实现更精细化的权限控制
运维·人工智能·ai
Work(沉淀版)3 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空4 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问4 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven4 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5165 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
要努力啊啊啊5 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
mzlogin7 小时前
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
人工智能
归去_来兮7 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
就是有点傻7 小时前
VM图像处理之图像二值化
图像处理·人工智能·计算机视觉