5-4-2知识图谱推理-基于规则学习的知识图谱推理

利用图的结构实现关系推理:PRA

基于思想:将连接两个实体的路径作为特征来预测其间可能存在的关系。

基于规则学习的方法:AMIE

知识图谱中的规则可以用以下形式表示:

B1ΛB2Λ.....ΛBn=>H

其中B1ΛB2Λ.....ΛBn表示规则的body部分,有n个原子(atom)组成,H表示规则的head部分,由一个原子组成,每个原子A可以表示为A=r(x,y)形式,r表示原子包含的关系,x,y表示变量。

本demo中AMIE学习的规则为所有规则中的一个子集,即闭环的联通规则,也可以叫做路径规划:

r(x,z1)Λr2(z1,z2)Λ...rn(zn-1,y)=>r(x,y)

简化为B=>r0(x,y)

如果规则中的所有变量替换为具体的实体并保证每个实例化后的atom都存在图谱中,这样规则实例化后的结果成为规则的一个grounding。

规则的几个统计指标:

Support、HC、Confidence、PCA Confidence

借助表示学习来学习规则:

利用Embedding可以非常简便的计算关系的关系,也就是规则。

可微规则学习:NeuraLP:

提出了一个可微的一阶谓词逻辑规则学习模型。

可微规则学习:DRUM

可微规则学习:RuleE

规则与嵌入表示的迭代学习:IterE

相关推荐
AI街潜水的八角16 小时前
基于Opencv的条形码识别与创建
人工智能·opencv·计算机视觉
谁怕平生太急16 小时前
Mobile GUI Agent相关学习资料整理
人工智能·大模型
牛奶16 小时前
2026 春涧·前端走向全栈
前端·人工智能·全栈
DeepVis Research16 小时前
【AGI/Simulation】2026年度通用人工智能图灵测试与高频博弈仿真基准索引 (Benchmark Index)
大数据·人工智能·算法·数据集·量化交易
Linux猿16 小时前
2025数字消费发展报告 | 附PDF
人工智能·研报精选
这张生成的图像能检测吗17 小时前
(论文速读)CCASeg:基于卷积交叉注意的语义分割多尺度上下文解码
人工智能·深度学习·计算机视觉·语义分割
大猪宝宝学AI18 小时前
【AI Infra】BF-PP:广度优先流水线并行
人工智能·性能优化·大模型·模型训练
Jerryhut18 小时前
Opencv总结7——全景图像拼接
人工智能·opencv·计算机视觉
Captaincc19 小时前
AI 原生下的新的社区形态会是什么
人工智能
简简单单OnlineZuozuo20 小时前
提示架构:设计可靠、确定性的AI系统
人工智能·unity·架构·游戏引擎·基准测试·the stanford ai·儿童