【NLP自然语言处理】为什么说BERT是bidirectional

首先,来看一下Transformer架构图:

我们知道,Bert设计时主要采用的是Transformer编码器部分,要论述Bert为啥是双向的,我想从编码器和解码器的注意力机制来阐述。

在看这篇博客前,需要对Transformer有一定的了解,在这里推荐博客翻译: 详细图解Transformer

我们知道,编码器部分的注意力机制采用多头注意力机制,而为什么要用MultiHead Attention,Transformer给出的解释为:Multi-head attention允许模型共同关注来自不同位置的不同表示子空间的信息

而解码器部分采用的是Masked Attention,mask的目的是为了防止网络看到不该看到的内容

二者区别一个是双向,一个是单向,这也就是我如何理解的Bert采用的是双向编码器了。

关于MultiHead Attention和Masked Attention机制,这篇博客及其推荐:MultiHead-Attention和Masked-Attention的机制和原理

相关推荐
阿龙AI日记1 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
xier_ran6 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
海边夕阳20067 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
【建模先锋】8 小时前
论文复现!基于SAM-BiGRU网络的锂电池RUL预测
深度学习·论文复现·锂电池寿命预测·锂电池数据集·寿命预测
清云逸仙10 小时前
AI Prompt 工程最佳实践:打造结构化的Prompt
人工智能·经验分享·深度学习·ai·ai编程
松岛雾奈.23011 小时前
深度学习--TensorFlow框架使用
深度学习·tensorflow·neo4j
中杯可乐多加冰11 小时前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
大佬,救命!!!12 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
励志成为糕手13 小时前
循环神经网络(RNN):时序数据的深度学习模型
人工智能·rnn·深度学习·gru·lstm
CoovallyAIHub15 小时前
超越YOLOv8/v11!自研RKM-YOLO为输电线路巡检精度、速度双提升
深度学习·算法·计算机视觉