【NLP自然语言处理】为什么说BERT是bidirectional

首先,来看一下Transformer架构图:

我们知道,Bert设计时主要采用的是Transformer编码器部分,要论述Bert为啥是双向的,我想从编码器和解码器的注意力机制来阐述。

在看这篇博客前,需要对Transformer有一定的了解,在这里推荐博客翻译: 详细图解Transformer

我们知道,编码器部分的注意力机制采用多头注意力机制,而为什么要用MultiHead Attention,Transformer给出的解释为:Multi-head attention允许模型共同关注来自不同位置的不同表示子空间的信息

而解码器部分采用的是Masked Attention,mask的目的是为了防止网络看到不该看到的内容

二者区别一个是双向,一个是单向,这也就是我如何理解的Bert采用的是双向编码器了。

关于MultiHead Attention和Masked Attention机制,这篇博客及其推荐:MultiHead-Attention和Masked-Attention的机制和原理

相关推荐
罗西的思考6 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
深度学习实战训练营8 小时前
U-Net++:嵌套密集跳跃连接,多尺度融合增强特征表达,医学影像分割的unet创新-k学长深度学习专栏
人工智能·深度学习
哥布林学者8 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (一)经典卷积网络
深度学习·ai
Coding茶水间8 小时前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
IT·小灰灰9 小时前
告别“翻墙“烦恼:DMXAPI让Gemini-3-pro-thinking调用快如闪电
网络·人工智能·python·深度学习·云计算
DatGuy9 小时前
Week 29: 深度学习补遗:MoE的稳定性机制与路由策略实现
人工智能·深度学习
一瞬祈望11 小时前
PyTorch 图像分类完整项目模板实战
人工智能·pytorch·python·深度学习·分类
Master_oid12 小时前
机器学习25:了解领域自适应(Domain Adaptation)
人工智能·深度学习·机器学习
江上鹤.14812 小时前
Day37 MLP神经网络的训练
人工智能·深度学习·神经网络
java1234_小锋13 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 残差连接(Residual Connection)详解以及算法实现
深度学习·语言模型·transformer