【NLP自然语言处理】为什么说BERT是bidirectional

首先,来看一下Transformer架构图:

我们知道,Bert设计时主要采用的是Transformer编码器部分,要论述Bert为啥是双向的,我想从编码器和解码器的注意力机制来阐述。

在看这篇博客前,需要对Transformer有一定的了解,在这里推荐博客翻译: 详细图解Transformer

我们知道,编码器部分的注意力机制采用多头注意力机制,而为什么要用MultiHead Attention,Transformer给出的解释为:Multi-head attention允许模型共同关注来自不同位置的不同表示子空间的信息

而解码器部分采用的是Masked Attention,mask的目的是为了防止网络看到不该看到的内容

二者区别一个是双向,一个是单向,这也就是我如何理解的Bert采用的是双向编码器了。

关于MultiHead Attention和Masked Attention机制,这篇博客及其推荐:MultiHead-Attention和Masked-Attention的机制和原理

相关推荐
贾全12 分钟前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
我是小哪吒2.038 分钟前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉030742 分钟前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
埃菲尔铁塔_CV算法3 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
中杯可乐多加冰5 小时前
【AI落地应用实战】AIGC赋能职场PPT汇报:从效率工具到辅助优化
人工智能·深度学习·神经网络·aigc·powerpoint·ai赋能
烟锁池塘柳05 小时前
【大模型】解码策略:Greedy Search、Beam Search、Top-k/Top-p、Temperature Sampling等
人工智能·深度学习·机器学习
zzc9216 小时前
时频图数据集更正程序,去除坐标轴白边及调整对应的标签值
人工智能·深度学习·数据集·标签·时频图·更正·白边
Blossom.1187 小时前
机器学习在智能供应链中的应用:需求预测与物流优化
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·语音识别
Gyoku Mint7 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
m0_7513363910 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子