NLP基础知识4【CRF】

目录

基本原理

  • X是输入文本(观测序列)
  • y是输出标签(状态序列)
    特点:
  • 每个状态都可以整个 观测序列决定,与 x 1 , x 2 , . . . . . x n {x_1,x_2,.....x_n} x1,x2,.....xn都相关,实际上一般是上下文10个token就可以了。
  • 对每一个状态y仅与相邻状态 y i − 1 , y i + 1 y_{i-1},y_{i+1} yi−1,yi+1相关
    # 公式
  • 通过公式对条件概率进行建模,对于已知概率的观测序列X,求其发生的情况下,各个序列y的发生概率。
  • t j t_j tj是转移特征函数,主要衡量相邻状态 y之间的影响,同时可以与x相关联
  • s k s_k sk是状态特征函数,主要衡量观测序列 x对状态变量的影响
  • λ \lambda λ和 μ \mu μ是对应特征函数的权重
  • exp用于定义模型中的概率分布函数
  • Z是规范化因子,用于确保式子是一个概率

过程

CRF模型完全由特征函数和权重决定:

  • 训练阶段(编码)用优化算法迭代,调个包就行
  • 预测阶段(解码) 使用维特比算法(动态规划,类似广度优先搜索),寻找概率最高的标签路径
    • 使用暴力搜索不可能,使用贪心算法未必是全局最优


PS

转移矩阵 (Transition Matrix):

  • 这是CRF模型中的一个矩阵,用于表示从一个状态(或标签)转移到另一个状态的概率。对于序列标注任务来说,状态可以是不同的标签(如B(开头)、I(中间)、O(其他)),转移矩阵告诉模型在给定前一个标签后,下一个标签出现的可能性有多大。

发射矩阵 (Emission Matrix):

  • 发射矩阵用于表示观察到某个状态下特定观察值的概率。在序列标注中,观察值通常是输入的词语或特征,而状态则是对应的标签。发射矩阵告诉模型在给定一个标签时,观察到具体词语的概率。

得分矩阵 (Score Matrix):

  • 得分矩阵是指CRF模型为每个可能的标签序列分配的分数。这些分数基于转移矩阵和发射矩阵的组合计算得出,通常利用动态规划算法(如维特比算法)来确定最佳的标签序列。
相关推荐
古希腊掌管学习的神6 分钟前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI34 分钟前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长1 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME2 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室3 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself3 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董3 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee3 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa3 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐3 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类