NLP基础知识4【CRF】

目录

基本原理

  • X是输入文本(观测序列)
  • y是输出标签(状态序列)
    特点:
  • 每个状态都可以整个 观测序列决定,与 x 1 , x 2 , . . . . . x n {x_1,x_2,.....x_n} x1,x2,.....xn都相关,实际上一般是上下文10个token就可以了。
  • 对每一个状态y仅与相邻状态 y i − 1 , y i + 1 y_{i-1},y_{i+1} yi−1,yi+1相关
    # 公式
  • 通过公式对条件概率进行建模,对于已知概率的观测序列X,求其发生的情况下,各个序列y的发生概率。
  • t j t_j tj是转移特征函数,主要衡量相邻状态 y之间的影响,同时可以与x相关联
  • s k s_k sk是状态特征函数,主要衡量观测序列 x对状态变量的影响
  • λ \lambda λ和 μ \mu μ是对应特征函数的权重
  • exp用于定义模型中的概率分布函数
  • Z是规范化因子,用于确保式子是一个概率

过程

CRF模型完全由特征函数和权重决定:

  • 训练阶段(编码)用优化算法迭代,调个包就行
  • 预测阶段(解码) 使用维特比算法(动态规划,类似广度优先搜索),寻找概率最高的标签路径
    • 使用暴力搜索不可能,使用贪心算法未必是全局最优


PS

转移矩阵 (Transition Matrix):

  • 这是CRF模型中的一个矩阵,用于表示从一个状态(或标签)转移到另一个状态的概率。对于序列标注任务来说,状态可以是不同的标签(如B(开头)、I(中间)、O(其他)),转移矩阵告诉模型在给定前一个标签后,下一个标签出现的可能性有多大。

发射矩阵 (Emission Matrix):

  • 发射矩阵用于表示观察到某个状态下特定观察值的概率。在序列标注中,观察值通常是输入的词语或特征,而状态则是对应的标签。发射矩阵告诉模型在给定一个标签时,观察到具体词语的概率。

得分矩阵 (Score Matrix):

  • 得分矩阵是指CRF模型为每个可能的标签序列分配的分数。这些分数基于转移矩阵和发射矩阵的组合计算得出,通常利用动态规划算法(如维特比算法)来确定最佳的标签序列。
相关推荐
LaughingZhu2 小时前
Product Hunt 每日热榜 | 2026-02-14
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
大模型探员2 小时前
告别答非所问!深度解析文档切分如何决定RAG的搜索上限
人工智能
民乐团扒谱机2 小时前
【读论文】深度学习中的卷积算术指南 A guide to convolution arithmetic for deep learning
人工智能·深度学习·神经网络·机器学习·cnn·卷积神经网络·图像识别
byzh_rc3 小时前
[深度学习网络从入门到入土] 拓展 - Inception
网络·人工智能·深度学习
阿里巴巴淘系技术团队官网博客3 小时前
从应用架构的视角看退小宝AI助手落地现状
人工智能·架构
寻星探路3 小时前
【JVM 终极通关指南】万字长文从底层到实战全维度深度拆解 Java 虚拟机
java·开发语言·jvm·人工智能·python·算法·ai
Elastic 中国社区官方博客3 小时前
DevRel 通讯 — 2026 年 2 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·jina
一个天蝎座 白勺 程序猿3 小时前
飞算JavaAI:从情绪价值到代码革命,智能合并项目与定制化开发新范式
人工智能·ai·自动化·javaai
田里的水稻3 小时前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
摘星编程4 小时前
解析CANN ops-transformer的FlashAttention算子:注意力机制的内存优化
人工智能·深度学习·transformer