机器学习(二十二):精度和召回率

一、倾斜数据集

倾斜数据集:一个数据集中的正面和负面例子的比例非常不平衡,比如数据集中,结果为1的占比20%,结果为0的占比80%

例子:如果数据集的结果中只有0.5%是1,其余结果是0。有一个模型的预测准确度是99.5%,但是预测了所有数据的结果都是0,这个模型的准确度很高,但是预测不出结果为1,这不能代表这个模型是好模型。因此需要引入其他的误差度量方式来评估模型好坏。

二、精度和召回率

精度:预测为1的数据中,实际真正为1的占比。

召回率:实际为1的数据中,预测真正为1的占比。

例子:下图是实际结果为1和0时,预测结果为1和0的数量统计。

  • 实际为1,预测真1的数据有15个;
  • 实际为1,预测假0的数据有10个;
  • 实际为0,预测假1的数据有5个;
  • 实际为0,预测真0的数据有70个

精度计算:

精度=真正1的数量/预测为1的数量=真1的数量/(真1的数量+假1的数量)=15/(15+5)

召回率计算:

召回率=真正1的数量/实际1的数量=真1的数量/(真1的数量+假0的数量)=15/(15+10)

三、精度和召回的权衡

以逻辑回归为例:模型预测出结果为1的概率是

可以设定阈值为0.5,当≥0.5时,结果为1,当<0.5时,结果为0

也可以设定阈值为0.7,当≥0.7时,结果为1,当<0.7时,结果为0

也可以设定阈值为0.3,当≥0.3时,结果为1,当<0.3时,结果为0

当提高阈值,能提高精度,但是会降低召回率

当降低阈值,能提高召回率,但是会降低精度

如何权衡精度和召回率?

可以使用F1 score结合精度和召回率,F1 score也称为谐波平均值,是一种取平均值的方法,计算结果更偏向于较小的值。

计算公式(P为精度,R为召回):

学习来源:吴恩达机器学习,14.1-14.2节

相关推荐
Shawn_Shawn3 小时前
人工智能入门概念介绍
人工智能
极限实验室3 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9964 小时前
Z-Image: 100% Free AI Image Generator
人工智能
爬点儿啥4 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉5 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明5 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习5 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考6 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
dajun1811234566 小时前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能
人邮异步社区6 小时前
PRML为何是机器学习的经典书籍中的经典?
人工智能·机器学习