机器学习(二十二):精度和召回率

一、倾斜数据集

倾斜数据集:一个数据集中的正面和负面例子的比例非常不平衡,比如数据集中,结果为1的占比20%,结果为0的占比80%

例子:如果数据集的结果中只有0.5%是1,其余结果是0。有一个模型的预测准确度是99.5%,但是预测了所有数据的结果都是0,这个模型的准确度很高,但是预测不出结果为1,这不能代表这个模型是好模型。因此需要引入其他的误差度量方式来评估模型好坏。

二、精度和召回率

精度:预测为1的数据中,实际真正为1的占比。

召回率:实际为1的数据中,预测真正为1的占比。

例子:下图是实际结果为1和0时,预测结果为1和0的数量统计。

  • 实际为1,预测真1的数据有15个;
  • 实际为1,预测假0的数据有10个;
  • 实际为0,预测假1的数据有5个;
  • 实际为0,预测真0的数据有70个

精度计算:

精度=真正1的数量/预测为1的数量=真1的数量/(真1的数量+假1的数量)=15/(15+5)

召回率计算:

召回率=真正1的数量/实际1的数量=真1的数量/(真1的数量+假0的数量)=15/(15+10)

三、精度和召回的权衡

以逻辑回归为例:模型预测出结果为1的概率是

可以设定阈值为0.5,当≥0.5时,结果为1,当<0.5时,结果为0

也可以设定阈值为0.7,当≥0.7时,结果为1,当<0.7时,结果为0

也可以设定阈值为0.3,当≥0.3时,结果为1,当<0.3时,结果为0

当提高阈值,能提高精度,但是会降低召回率

当降低阈值,能提高召回率,但是会降低精度

如何权衡精度和召回率?

可以使用F1 score结合精度和召回率,F1 score也称为谐波平均值,是一种取平均值的方法,计算结果更偏向于较小的值。

计算公式(P为精度,R为召回):

学习来源:吴恩达机器学习,14.1-14.2节

相关推荐
serve the people1 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K8921 小时前
前端机器学习
人工智能·机器学习
陈天伟教授1 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_650108241 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy10112 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里2 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算
0***R5152 小时前
人工智能在金融风控中的应用
人工智能
2501_941403762 小时前
人工智能赋能智慧金融互联网应用:智能风控、个性化理财与金融服务优化实践探索》
人工智能
youngerwang2 小时前
【字节跳动 AI 原生 IDE TRAE 】
ide·人工智能·trae
youngerwang2 小时前
AI 编程环境与主流 AI IDE 对比分析报告
ide·人工智能