机器学习(二十二):精度和召回率

一、倾斜数据集

倾斜数据集:一个数据集中的正面和负面例子的比例非常不平衡,比如数据集中,结果为1的占比20%,结果为0的占比80%

例子:如果数据集的结果中只有0.5%是1,其余结果是0。有一个模型的预测准确度是99.5%,但是预测了所有数据的结果都是0,这个模型的准确度很高,但是预测不出结果为1,这不能代表这个模型是好模型。因此需要引入其他的误差度量方式来评估模型好坏。

二、精度和召回率

精度:预测为1的数据中,实际真正为1的占比。

召回率:实际为1的数据中,预测真正为1的占比。

例子:下图是实际结果为1和0时,预测结果为1和0的数量统计。

  • 实际为1,预测真1的数据有15个;
  • 实际为1,预测假0的数据有10个;
  • 实际为0,预测假1的数据有5个;
  • 实际为0,预测真0的数据有70个

精度计算:

精度=真正1的数量/预测为1的数量=真1的数量/(真1的数量+假1的数量)=15/(15+5)

召回率计算:

召回率=真正1的数量/实际1的数量=真1的数量/(真1的数量+假0的数量)=15/(15+10)

三、精度和召回的权衡

以逻辑回归为例:模型预测出结果为1的概率是

可以设定阈值为0.5,当≥0.5时,结果为1,当<0.5时,结果为0

也可以设定阈值为0.7,当≥0.7时,结果为1,当<0.7时,结果为0

也可以设定阈值为0.3,当≥0.3时,结果为1,当<0.3时,结果为0

当提高阈值,能提高精度,但是会降低召回率

当降低阈值,能提高召回率,但是会降低精度

如何权衡精度和召回率?

可以使用F1 score结合精度和召回率,F1 score也称为谐波平均值,是一种取平均值的方法,计算结果更偏向于较小的值。

计算公式(P为精度,R为召回):

学习来源:吴恩达机器学习,14.1-14.2节

相关推荐
SoFlu软件机器人30 分钟前
Cursor、飞算JavaAI、GitHub Copilot、Gemini CLI 等热门 AI 开发工具合集
人工智能·github·copilot
isNotNullX1 小时前
实时数仓和离线数仓还分不清楚?看完就懂了
大数据·数据库·数据仓库·人工智能·数据分析
Liudef061 小时前
大语言模型的极限:知识、推理与创造力的边界探析
人工智能·语言模型·自然语言处理
平和男人杨争争1 小时前
机器学习12——支持向量机中
算法·机器学习·支持向量机
潮湿的心情1 小时前
亚洲牧原:活跃行业交流,延伸公益版图,市场拓展再结硕果
大数据·人工智能
平和男人杨争争1 小时前
机器学习14——线性回归
人工智能·机器学习·线性回归
一个天蝎座 白勺 程序猿2 小时前
飞算JavaAI进阶:重塑Java开发范式的AI革命
java·开发语言·人工智能
李昊哲小课2 小时前
pandas销售数据分析
人工智能·python·数据挖掘·数据分析·pandas
whabc1002 小时前
和鲸社区深度学习基础训练营2025年关卡2(2)sklearn中的MLPClassifier
人工智能·深度学习·numpy
往日情怀酿做酒 V17639296383 小时前
pytorch的介绍以及张量的创建
人工智能·pytorch·python