机器学习(二十二):精度和召回率

一、倾斜数据集

倾斜数据集:一个数据集中的正面和负面例子的比例非常不平衡,比如数据集中,结果为1的占比20%,结果为0的占比80%

例子:如果数据集的结果中只有0.5%是1,其余结果是0。有一个模型的预测准确度是99.5%,但是预测了所有数据的结果都是0,这个模型的准确度很高,但是预测不出结果为1,这不能代表这个模型是好模型。因此需要引入其他的误差度量方式来评估模型好坏。

二、精度和召回率

精度:预测为1的数据中,实际真正为1的占比。

召回率:实际为1的数据中,预测真正为1的占比。

例子:下图是实际结果为1和0时,预测结果为1和0的数量统计。

  • 实际为1,预测真1的数据有15个;
  • 实际为1,预测假0的数据有10个;
  • 实际为0,预测假1的数据有5个;
  • 实际为0,预测真0的数据有70个

精度计算:

精度=真正1的数量/预测为1的数量=真1的数量/(真1的数量+假1的数量)=15/(15+5)

召回率计算:

召回率=真正1的数量/实际1的数量=真1的数量/(真1的数量+假0的数量)=15/(15+10)

三、精度和召回的权衡

以逻辑回归为例:模型预测出结果为1的概率是

可以设定阈值为0.5,当≥0.5时,结果为1,当<0.5时,结果为0

也可以设定阈值为0.7,当≥0.7时,结果为1,当<0.7时,结果为0

也可以设定阈值为0.3,当≥0.3时,结果为1,当<0.3时,结果为0

当提高阈值,能提高精度,但是会降低召回率

当降低阈值,能提高召回率,但是会降低精度

如何权衡精度和召回率?

可以使用F1 score结合精度和召回率,F1 score也称为谐波平均值,是一种取平均值的方法,计算结果更偏向于较小的值。

计算公式(P为精度,R为召回):

学习来源:吴恩达机器学习,14.1-14.2节

相关推荐
整得咔咔响1 小时前
贝尔曼最优公式(BOE)
人工智能·算法·机器学习
2501_946961471 小时前
极简大气创业融资 PPT 模板,适合路演、项目宣讲
人工智能·排序算法
得一录1 小时前
AI 语音助手:如何用大模型优化智能语音交互?
人工智能
玄同7651 小时前
Python 自动发送邮件实战:用 QQ/163 邮箱发送大模型生成的内容
开发语言·人工智能·python·深度学习·机器学习·邮件·邮箱
逸俊晨晖1 小时前
NVIDIA 4090的8路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·nvidia
Olamyh1 小时前
【手搓 ReAct Agent:告别框架,回归本质】
人工智能·python
seaside20031 小时前
大模型计算量、显存计算方法推导
人工智能·大模型
AI资源库1 小时前
nvidiapersonaplex-7b-v1模型深入解析
人工智能·语言模型·回归
weixin_509138341 小时前
智能体认知动力学理论和实践
人工智能·智能体·语义空间·认知动力学
玄同7651 小时前
机器学习中的三大距离度量:欧式距离、曼哈顿距离、切比雪夫距离详解
人工智能·深度学习·神经网络·目标检测·机器学习·自然语言处理·数据挖掘