机器学习(二十二):精度和召回率

一、倾斜数据集

倾斜数据集:一个数据集中的正面和负面例子的比例非常不平衡,比如数据集中,结果为1的占比20%,结果为0的占比80%

例子:如果数据集的结果中只有0.5%是1,其余结果是0。有一个模型的预测准确度是99.5%,但是预测了所有数据的结果都是0,这个模型的准确度很高,但是预测不出结果为1,这不能代表这个模型是好模型。因此需要引入其他的误差度量方式来评估模型好坏。

二、精度和召回率

精度:预测为1的数据中,实际真正为1的占比。

召回率:实际为1的数据中,预测真正为1的占比。

例子:下图是实际结果为1和0时,预测结果为1和0的数量统计。

  • 实际为1,预测真1的数据有15个;
  • 实际为1,预测假0的数据有10个;
  • 实际为0,预测假1的数据有5个;
  • 实际为0,预测真0的数据有70个

精度计算:

精度=真正1的数量/预测为1的数量=真1的数量/(真1的数量+假1的数量)=15/(15+5)

召回率计算:

召回率=真正1的数量/实际1的数量=真1的数量/(真1的数量+假0的数量)=15/(15+10)

三、精度和召回的权衡

以逻辑回归为例:模型预测出结果为1的概率是

可以设定阈值为0.5,当≥0.5时,结果为1,当<0.5时,结果为0

也可以设定阈值为0.7,当≥0.7时,结果为1,当<0.7时,结果为0

也可以设定阈值为0.3,当≥0.3时,结果为1,当<0.3时,结果为0

当提高阈值,能提高精度,但是会降低召回率

当降低阈值,能提高召回率,但是会降低精度

如何权衡精度和召回率?

可以使用F1 score结合精度和召回率,F1 score也称为谐波平均值,是一种取平均值的方法,计算结果更偏向于较小的值。

计算公式(P为精度,R为召回):

学习来源:吴恩达机器学习,14.1-14.2节

相关推荐
东方芷兰4 分钟前
LLM 笔记 —— 07 Tokenizers(BPE、WordPeice、SentencePiece、Unigram)
人工智能·笔记·深度学习·神经网络·语言模型·自然语言处理·nlp
CoovallyAIHub6 分钟前
超详细链式插补 (MICE) 多元插补:机器学习模型的高级缺失数据处理
算法·机器学习·计算机视觉
lqjun082727 分钟前
平面的方程公式
线性代数·机器学习·平面
hqyjzsb38 分钟前
2025 年项目管理转型白皮书:AI 驱动下的能力重构与跨域突破
开发语言·人工智能·重构·产品经理·编程语言·caie
Juchecar41 分钟前
大模型开源闭源之前景分析
人工智能
萤丰信息42 分钟前
从超级大脑到智能毛细血管:四大技术重构智慧园区生态版图
java·人工智能·科技·重构·架构·智慧园区
棱镜研途1 小时前
科研快报 |声波“听”见火灾温度:混合深度学习重构三维温度场
人工智能·深度学习·目标检测·重构·传感·声波测温·火灾安全
ygyqinghuan1 小时前
PyTorch 实现 MNIST 手写数字识别
人工智能·pytorch·python
武子康1 小时前
AI-调查研究-102-具身智能 智能机械臂、自动驾驶与人形机器人的模仿学习、强化学习与多模态融合趋势
人工智能·深度学习·机器学习·ai·机器人·强化学习·具身智能