一键语法错误增强工具 ChineseErrorCorrector

一键语法错误增强工具

欢迎使用我最近开源的使用一键语法错误增强工具,该工具可以进行14种语法错误的增强,不同行业可以根据自己的数据进行错误替换,来训练自己的语法和拼写模型,希望推动行业文本纠错的发展,欢迎Star,14种错误如下所示:

每种错误类型,对应的使用方法,如下所示:

环境的安装

复制代码
pip install ChineseErrorCorrector

不同类型的数据增强

1.缺字漏字

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_word("小明住在北京"))

# 输出:小明在北京

2.错别字错误

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_word("小明住在北京"))
# 输出:小明住在北鲸

3.缺少标点

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_char("小明住在北京,热爱NLP。"))
# 输出:小明住在北京热爱NLP。

4.错用标点

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_char("小明住在北京"))
# 输出:小明住在北京。热爱NLP。

5.主语不明

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.unknow_sub("小明住在北京"))
# 输出:住在北京

6.谓语残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.unknow_pred("小明住在北京"))
# 输出:小明在北京

7.宾语残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_obj("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,热爱。

8.其他成分残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_others("小明住在北京,热爱NLP。"))
# 输出:小明住北京,热爱NLP。

9.虚词多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_fun("小明住在北京,热爱NLP。"))
# 输出:小明所住的在北京,热爱NLP。

10.其他成分多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_component("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,热爱NLP。,看着

11.主语多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_sub("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,小明热爱NLP。

12.语序不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_sentence_order("小明住在北京,热爱NLP。"))
# 输出:热爱NLP。,小明住在北京

13.动宾搭配不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_ver_obj("小明住在北京,热爱NLP。"))
# 输出:None ,即无法进行此类错误的增强

14.其他搭配不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.other_wrong("小明住在北京,热爱NLP。"))
# 输出:None, 即无法进行此类错误的增强

**代码地址:**https://github.com/TW-NLP/ChineseErrorCorrector

相关推荐
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
强哥之神2 小时前
Nexa AI发布OmniAudio-2.6B:一款快速的音频语言模型,专为边缘部署设计
人工智能·深度学习·机器学习·语言模型·自然语言处理·音视频·openai
18号房客2 小时前
一个简单的深度学习模型例程,使用Keras(基于TensorFlow)构建一个卷积神经网络(CNN)来分类MNIST手写数字数据集。
人工智能·深度学习·机器学习·生成对抗网络·语言模型·自然语言处理·tensorflow
日出等日落5 小时前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
cd_farsight14 小时前
nlp初学者怎么入门?需要学习哪些?
人工智能·自然语言处理
AI明说14 小时前
评估大语言模型在药物基因组学问答任务中的表现:PGxQA
人工智能·语言模型·自然语言处理·数智药师·数智药学
Focus_Liu14 小时前
NLP-UIE(Universal Information Extraction)
人工智能·自然语言处理
西岸行者1 天前
捋一捋相关性运算,以及DTD和NLP中的应用
人工智能·算法·自然语言处理·信号处理
司南OpenCompass1 天前
顶会评测集解读-AlignBench: 大语言模型中文对齐基准
人工智能·语言模型·自然语言处理·大模型评测
地中海~1 天前
DENIAL-OF-SERVICE POISONING ATTACKS ON LARGE LANGUAGE MODELS
人工智能·语言模型·自然语言处理