一键语法错误增强工具 ChineseErrorCorrector

一键语法错误增强工具

欢迎使用我最近开源的使用一键语法错误增强工具,该工具可以进行14种语法错误的增强,不同行业可以根据自己的数据进行错误替换,来训练自己的语法和拼写模型,希望推动行业文本纠错的发展,欢迎Star,14种错误如下所示:

每种错误类型,对应的使用方法,如下所示:

环境的安装

复制代码
pip install ChineseErrorCorrector

不同类型的数据增强

1.缺字漏字

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_word("小明住在北京"))

# 输出:小明在北京

2.错别字错误

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_word("小明住在北京"))
# 输出:小明住在北鲸

3.缺少标点

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_char("小明住在北京,热爱NLP。"))
# 输出:小明住在北京热爱NLP。

4.错用标点

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_char("小明住在北京"))
# 输出:小明住在北京。热爱NLP。

5.主语不明

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.unknow_sub("小明住在北京"))
# 输出:住在北京

6.谓语残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.unknow_pred("小明住在北京"))
# 输出:小明在北京

7.宾语残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_obj("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,热爱。

8.其他成分残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_others("小明住在北京,热爱NLP。"))
# 输出:小明住北京,热爱NLP。

9.虚词多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_fun("小明住在北京,热爱NLP。"))
# 输出:小明所住的在北京,热爱NLP。

10.其他成分多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_component("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,热爱NLP。,看着

11.主语多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_sub("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,小明热爱NLP。

12.语序不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_sentence_order("小明住在北京,热爱NLP。"))
# 输出:热爱NLP。,小明住在北京

13.动宾搭配不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_ver_obj("小明住在北京,热爱NLP。"))
# 输出:None ,即无法进行此类错误的增强

14.其他搭配不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.other_wrong("小明住在北京,热爱NLP。"))
# 输出:None, 即无法进行此类错误的增强

**代码地址:**https://github.com/TW-NLP/ChineseErrorCorrector

相关推荐
程序小K7 小时前
自然语言处理Hugging Face Transformers
人工智能·自然语言处理
itwangyang52013 小时前
AIDD-人工智能药物设计-大语言模型在医学领域的革命性应用
人工智能·语言模型·自然语言处理
cxr82815 小时前
大语言模型深度思考与交互增强
人工智能·语言模型·自然语言处理
空中湖15 小时前
AI大模型原理可视化工具:深入浅出理解大语言模型的工作原理
人工智能·语言模型·自然语言处理
pen-ai18 小时前
【NLP】 21. Transformer整体流程概述 Encoder 与 Decoder架构对比
人工智能·自然语言处理·transformer
heine1621 天前
nlp面试重点
自然语言处理
川泽曦星1 天前
【第四十周】文献阅读:用于检索-增强大语言模型的查询与重写
人工智能·语言模型·自然语言处理
JovaZou2 天前
n8n 本地部署及实践应用,实现零成本自动化运营 Telegram 频道(保证好使)
运维·人工智能·docker·ai·自然语言处理·自动化·llama
Jamence2 天前
多模态大语言模型arxiv论文略读(十二)
人工智能·语言模型·自然语言处理
music&movie2 天前
调研大语言模型的知识编辑技术
人工智能·语言模型·自然语言处理