一键语法错误增强工具 ChineseErrorCorrector

一键语法错误增强工具

欢迎使用我最近开源的使用一键语法错误增强工具,该工具可以进行14种语法错误的增强,不同行业可以根据自己的数据进行错误替换,来训练自己的语法和拼写模型,希望推动行业文本纠错的发展,欢迎Star,14种错误如下所示:

每种错误类型,对应的使用方法,如下所示:

环境的安装

复制代码
pip install ChineseErrorCorrector

不同类型的数据增强

1.缺字漏字

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_word("小明住在北京"))

# 输出:小明在北京

2.错别字错误

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_word("小明住在北京"))
# 输出:小明住在北鲸

3.缺少标点

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_char("小明住在北京,热爱NLP。"))
# 输出:小明住在北京热爱NLP。

4.错用标点

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_char("小明住在北京"))
# 输出:小明住在北京。热爱NLP。

5.主语不明

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.unknow_sub("小明住在北京"))
# 输出:住在北京

6.谓语残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.unknow_pred("小明住在北京"))
# 输出:小明在北京

7.宾语残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_obj("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,热爱。

8.其他成分残缺

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.lack_others("小明住在北京,热爱NLP。"))
# 输出:小明住北京,热爱NLP。

9.虚词多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_fun("小明住在北京,热爱NLP。"))
# 输出:小明所住的在北京,热爱NLP。

10.其他成分多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_component("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,热爱NLP。,看着

11.主语多余

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.red_sub("小明住在北京,热爱NLP。"))
# 输出:小明住在北京,小明热爱NLP。

12.语序不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_sentence_order("小明住在北京,热爱NLP。"))
# 输出:热爱NLP。,小明住在北京

13.动宾搭配不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.wrong_ver_obj("小明住在北京,热爱NLP。"))
# 输出:None ,即无法进行此类错误的增强

14.其他搭配不当

复制代码
from ChineseErrorCorrector.dat import GrammarErrorDat

cged_tool = GrammarErrorDat()
print(cged_tool.other_wrong("小明住在北京,热爱NLP。"))
# 输出:None, 即无法进行此类错误的增强

**代码地址:**https://github.com/TW-NLP/ChineseErrorCorrector

相关推荐
搜搜秀1 小时前
内存传输速率MT/s
人工智能·自然语言处理·机器翻译
javastart3 小时前
OpenRLHF:面向超大语言模型的高性能RLHF训练框架
人工智能·自然语言处理·aigc
金井PRATHAMA18 小时前
认知语义学对人工智能自然语言处理深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
星期天要睡觉19 小时前
深度学习——基于 PyTorch 的 CBOW 模型实现自然语言处理
pytorch·深度学习·自然语言处理
静西子1 天前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
北京地铁1号线2 天前
Qwen-VL(阿里通义千问视觉语言模型)模型架构和损失函数介绍
人工智能·语言模型·自然语言处理
灵光通码2 天前
自然语言处理开源框架全面分析
人工智能·自然语言处理·开源
这张生成的图像能检测吗2 天前
(论文速读)从语言模型到通用智能体
人工智能·计算机视觉·语言模型·自然语言处理·多模态·智能体
MarkHD2 天前
大语言模型入门指南:从原理到实践应用
人工智能·语言模型·自然语言处理
A尘埃2 天前
NLP(自然语言处理, Natural Language Processing)
人工智能·自然语言处理·nlp