代码随想录算法训练营第35天|01背包理论基础、01背包理论基础(滚动数组)、416. 分割等和子集

打卡Day35

1.01背包理论基础

题目链接:01背包理论基础

文档讲解: 代码随想录

01背包:

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。它的暴力解法,每个物品的状态只有两个,取或者不取,可以使用回溯法搜索出所有情况,时间复杂度为 o ( 2 n ) o(2^n) o(2n)。

动规五部曲:

(1)确定数组和下标含义

dp[ i ][ j ]表示从下标0~i的物品里任意取,放进容量为 j 的背包,价值总和最大值

(2)确定递推关系式

可以从两个角度进行分析,对于dp[ i ][ j ],可以放入物品 i,也可以不放。不放物品 i,由dp[ i-1 ][ j ]。放入物品 i,由dp[ i-1 ][ j - weight[i]] + value[ i ]。因此递推公式为dp[ i ][ j ] = max(dp[ i-1 ][ j ],dp[ i-1 ][ j - weight[i]] + value[ i ])。

(3)初始化

从递推关系式出发,dp[0][ j ]需要赋值,放入物品 0 时,各种背包容量的价值总和,其中当背包容量小于weight[0]时,不放入物品,价值为0,反之为value[0]。当背包容量为0时,放不进任何物品,则dp[ i ][0] = 0。

(4)遍历顺序

观察递推关系式,dp[ i ][ j ]主要由dp[ i-1 ][ j ]和dp[ i-1 ][ j - weight[i]]求到,只要上方和左上方有值就可以,因此两层循环遍历背包和物品的顺序无论先后,都可以得到答案。

(5)打印数组

python 复制代码
M, N = [int(x) for x in input().split()]
space = [int(x) for x in input().split()]
value = [int(x) for x in input().split()]

#任取0~i的物品放入背包容量j的最大价值,i行j列
dp = [[0] * (N + 1) for _ in range(M)] 

#初始化
for j in range(space[0], N + 1):
    dp[0][j] = value[0]

#遍历
for i in range(1, M):
    for j in range(1,N + 1):
        if j >= space[i]:
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - space[i]] + value[i])
        else:
            dp[i][j] = dp[i - 1][j]

print(dp[M - 1][N])

2.01背包理论基础(滚动数组)

题目链接:01背包理论基础

文档讲解: 代码随想录

(1)确定数组和下标的含义

dp[ j ]表示背包容量为 j 时物品的最大价值

(2)递推关系式

二维数组的递推关系完全可以将dp[i - 1]那一层拷贝到dp[i]上,因此,递推关系式为dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

(3)初始化

一定要和dp数组的定义吻合,dp[0] = 0,因为递推关系式是取最大值,因此其余位置可以初始化为0

(4)遍历顺序

两层循环,一个 i,一个 j。但 j 是从后往前,因为如果从前往后,物品0会被重复加入多次。二维数组dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!二维数组循环遍历的时候,背包和物品的顺序可以对调,但是在一维数组中,不可以换,因为一旦先遍历背包,背包是倒序遍历的,这样子每个dp[j]就只会放入一个物品。

(5)打印数组

python 复制代码
kind, bagspace = [int(x) for x in input().split()]
space = [int(x) for x in input().split()]
value = [int(x) for x in input().split()]

#新建dp数组,初始化为0
dp = [0] * (bagspace + 1)

for i in range(kind):
    for j in range(bagspace, space[i] - 1, -1):
            dp[j] = max(dp[j], dp[j - space[i]] + value[i])

print(dp[bagspace])

3.416. 分割等和子集

题目链接:416. 分割等和子集

文档讲解: 代码随想录

如果可以分割为两个子集数值和相等,那么就可以抽象为背包问题,背包容量为该数组值总和的一半,问是否存在元素将其装满。这是一个01背包问题,因为其中每个数字只能用一次。同时,需要注意的是,每个元素的重量和价值均为元素的数值。

(1)确定dp数组和下标

dp[ j ]表示容量 j 的背包可以装下的最大重量

(2)递推关系式

dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])

(3)初始化

从定义来看,dp[0] = 0,因为是取最大值,为了在取值时不被初始值覆盖,因此选择非负的最小值0,来初始化其余下标不为0的元素

(4)遍历顺序

采用一维数组,因此 i 从前往后遍历数组元素, j 从后往前遍历背包容量

(5)打印数组

python 复制代码
class Solution(object):
    def canPartition(self, nums):
        """
        :type nums: List[int]
        :rtype: bool
        """
        kind = len(nums)
        summ = sum(nums)
        if summ % 2 == 1:
            return False
        else:
            bagweight = summ / 2
        
        dp = [0] * (bagweight + 1)
        for i in range(kind):
            for j in range(bagweight, nums[i] - 1, -1):
                dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])
        
        if dp[bagweight] == bagweight:
            return True
        else:
            return False
python 复制代码
class Solution(object):
    def canPartition(self, nums):
        """
        :type nums: List[int]
        :rtype: bool
        """
        #精简版
        if sum(nums) % 2 != 0:
            return False
        target = sum(nums) / 2
        dp = [0] * (target + 1)
        for num in nums:
            for j in range(target, num - 1, -1):
                dp[j] = max(dp[j], dp[j - num] + num)
        if dp[target] ==target:
            return True
        return False
相关推荐
赵鑫亿19 分钟前
7.DP算法
算法·dp
iqay28 分钟前
【C语言】填空题/程序填空题1
c语言·开发语言·数据结构·c++·算法·c#
还有糕手1 小时前
算法【有依赖的背包】
算法·动态规划
pursuit_csdn2 小时前
力扣 347. 前 K 个高频元素
算法·leetcode
wen__xvn2 小时前
每日一题洛谷B3865 [GESP202309 二级] 小杨的 X 字矩阵c++
c++·算法·矩阵
makabaka_T_T2 小时前
25寒假算法刷题 | Day1 | LeetCode 240. 搜索二维矩阵 II,148. 排序链表
数据结构·c++·算法·leetcode·链表·矩阵
辞半夏丶北笙3 小时前
最近最少使用算法(LRU最近最少使用)缓存替换算法
java·算法·缓存
BingLin-Liu3 小时前
蓝桥杯备考:六大排序算法
算法·排序算法
南玖yy3 小时前
C语言:数组的介绍与使用
c语言·开发语言·算法
小菜鸟博士3 小时前
手撕Vision Transformer -- Day1 -- 基础原理
人工智能·深度学习·学习·算法·面试