LlamaIndex 实现 React Agent

React Agent 是指 LLM 对问题自行推理并调用外部工具解决问题,如下图所示,通过一些推理步骤最终找到想要的答案。

LlamaIndex 提供了实现 React Agent 的框架,通过框架可以轻松的实现上图中的步骤。那么,如果不用 LlamaIndex 应该如何实现一个 Agent 呢?首先,需要将需要调用的外部 API 和问题提供给LLM,LLM 判断得到结果是否需要调用API,如果需要调用,将 API 名称和参数相关信息返回到应用端,应用端执行API 并将结果再次传给 LLM,LLM 再次判断是否需要调用外部工具,这是个循环的过程,直到 LLM 得到答案。通过代码,分析一下 LlamaIndex 是如何实现 ReactAgent 多轮对话的。

用 LlamaIndex 实现 ReactAgent 代码如下:

复制代码
from llama_index.core.agent import ReActAgent
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import BaseTool, FunctionTool

from utils import init_model

import sys, os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'parent_directory')))


def multiply(a: int, b: int) -> int:
    """Multiply two integers and returns the result integer"""
    return a * b


multiply_tool = FunctionTool.from_defaults(fn=multiply)

def add(a: int, b: int) -> int:
    """Add two integers and returns the result integer"""
    return a + b


add_tool = FunctionTool.from_defaults(fn=add)


init_model()


agent = ReActAgent.from_tools([multiply_tool, add_tool], verbose=True)

response = agent.chat("What is 20+(2*4)? Calculate step by step ")

实现 Agent 主要通过 FunctionTool 和 ReactAgent,分别看一下两个类的主要作用。

FunctionTool

FunctionTool 用来定义外部工具,包括 Function 的详细信息,功能描述、入参和出参等信息,通过跟踪可以看到,代码首先创建了两个 FunctionTool,ToolMetadata 定义了工具的详细信息。


ReactAgent

创建 ReactAgent,传入 tools、llm,max_iteration 是指最大推理次数,默认为 10 次。

调用 self._react_chat_formatter 准备提示词,提示词准备完成之后,调用 LLM大模型进行处理。

解析大模型返回结果并调用对应 Function。

每一步的结果都会存储在 Memory 中,作为历史在下一步中传给 LLM 进行处理。

总结

LlamaIndex 通过提示词将问题与工具进行关联,通过多轮推理得到最终答案。核心还是在提示词,无论 RAG 还是 Agent,都是作为桥梁,底层逻辑还是通过提示词的方式把大模型的能力外部应用能力打通并进行整合。

相关推荐
海绵宝宝de派小星7 小时前
特征工程技巧与最佳实践
ai
CoderJia程序员甲7 小时前
GitHub 热榜项目 - 日榜(2026-01-22)
ai·开源·大模型·github·ai教程
Tom·Ge10 小时前
Claude Code 和 Cursor 有何异同
ai
哥布林学者12 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(六)情绪分类和词嵌入除偏
深度学习·ai
CoderJia程序员甲15 小时前
GitHub 热榜项目 - 日榜(2026-01-24)
git·ai·开源·llm·github
玉梅小洋15 小时前
Unity Muse 完整使用文档:Sprite+Texture专项
unity·ai·游戏引擎
带刺的坐椅16 小时前
Claude Code Agent Skills vs. Solon AI Skills:从工具增强到框架规范的深度对齐
java·ai·agent·claude·solon·mcp·skills
组合缺一16 小时前
MCP 进化:让静态 Tool 进化为具备“上下文感知”的远程 Skills
java·ai·llm·agent·mcp·skills
爱跑步的程序员~17 小时前
大模型prompt工程指南
ai·prompt
DS随心转APP17 小时前
豆包排版乱码怎么办?
人工智能·ai·chatgpt·deepseek·ds随心转