LlamaIndex 实现 React Agent

React Agent 是指 LLM 对问题自行推理并调用外部工具解决问题,如下图所示,通过一些推理步骤最终找到想要的答案。

LlamaIndex 提供了实现 React Agent 的框架,通过框架可以轻松的实现上图中的步骤。那么,如果不用 LlamaIndex 应该如何实现一个 Agent 呢?首先,需要将需要调用的外部 API 和问题提供给LLM,LLM 判断得到结果是否需要调用API,如果需要调用,将 API 名称和参数相关信息返回到应用端,应用端执行API 并将结果再次传给 LLM,LLM 再次判断是否需要调用外部工具,这是个循环的过程,直到 LLM 得到答案。通过代码,分析一下 LlamaIndex 是如何实现 ReactAgent 多轮对话的。

用 LlamaIndex 实现 ReactAgent 代码如下:

复制代码
from llama_index.core.agent import ReActAgent
from llama_index.llms.openai import OpenAI
from llama_index.core.tools import BaseTool, FunctionTool

from utils import init_model

import sys, os
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'parent_directory')))


def multiply(a: int, b: int) -> int:
    """Multiply two integers and returns the result integer"""
    return a * b


multiply_tool = FunctionTool.from_defaults(fn=multiply)

def add(a: int, b: int) -> int:
    """Add two integers and returns the result integer"""
    return a + b


add_tool = FunctionTool.from_defaults(fn=add)


init_model()


agent = ReActAgent.from_tools([multiply_tool, add_tool], verbose=True)

response = agent.chat("What is 20+(2*4)? Calculate step by step ")

实现 Agent 主要通过 FunctionTool 和 ReactAgent,分别看一下两个类的主要作用。

FunctionTool

FunctionTool 用来定义外部工具,包括 Function 的详细信息,功能描述、入参和出参等信息,通过跟踪可以看到,代码首先创建了两个 FunctionTool,ToolMetadata 定义了工具的详细信息。


ReactAgent

创建 ReactAgent,传入 tools、llm,max_iteration 是指最大推理次数,默认为 10 次。

调用 self._react_chat_formatter 准备提示词,提示词准备完成之后,调用 LLM大模型进行处理。

解析大模型返回结果并调用对应 Function。

每一步的结果都会存储在 Memory 中,作为历史在下一步中传给 LLM 进行处理。

总结

LlamaIndex 通过提示词将问题与工具进行关联,通过多轮推理得到最终答案。核心还是在提示词,无论 RAG 还是 Agent,都是作为桥梁,底层逻辑还是通过提示词的方式把大模型的能力外部应用能力打通并进行整合。

相关推荐
远方16092 小时前
15-Oracle 23ai Vector Search Similarity Search-向量相似性和混合搜索-实操
数据库·ai·oracle
崔lc8 小时前
Springboot项目集成Ai模型(阿里云百炼-DeepSeek)
java·spring boot·后端·ai
井云智能AI矩阵系统11 小时前
井云科技|智能体变现新路径:从开发到盈利的关键跨越
ai·智能体·coze·智能体变现·智能体接入小程序·智能体网站·智能体小程序
仙人掌_lz11 小时前
如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG
人工智能·搜索引擎·ai·金融·llm·rag·mcp
小白跃升坊1 天前
通过 MCP 服务对接 PostgreSQL 问数 (详细实操说明)
ai·linux操作系统·mcp
幼稚园的山代王1 天前
Prompt Enginering(提示工程)先进技术
java·人工智能·ai·chatgpt·langchain·prompt
wang_yb1 天前
概率图模型:机器学习的结构化概率之道
ai·databook
程序员鱼皮1 天前
我做了个 AI 高考分数预测器,这次终于能上清华了!
计算机·ai·互联网
vlln1 天前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai
huan_19932 天前
Spring AI中使用ChatMemory实现会话记忆功能
ai·spring ai·模型记忆·springai开发·chatmemory