本地部署 faster-whisper

本地部署 faster-whisper

  • [1. 创建虚拟环境](#1. 创建虚拟环境)
  • [2. 安装依赖模块](#2. 安装依赖模块)
  • [3. 创建 Web UI](#3. 创建 Web UI)
  • [4. 启动 Web UI](#4. 启动 Web UI)
  • [5. 访问 Web UI](#5. 访问 Web UI)

1. 创建虚拟环境

复制代码
conda create -n faster-whisper python=3.11 -y
conda activate faster-whisper

2. 安装依赖模块

复制代码
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
pip install faster-whisper
conda install matplotlib
pip install gradio

3. 创建 Web UI

复制代码
# webui.py
import gradio as gr
from faster_whisper import WhisperModel

# Initialize the model
# model_size = "large-v3"
model_size = "Systran/faster-whisper-large-v3"
model = WhisperModel(model_size, device="cuda", compute_type="float16")

def transcribe_audio(audio_file, language):
    # Transcribe the audio
    segments, info = model.transcribe(audio_file, beam_size=5, language=language)

    # Prepare the output
    transcription = ""
    for segment in segments:
        transcription += f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"

    detected_language = f"Detected language: {info.language} (probability: {info.language_probability:.2f})"

    return detected_language, transcription

# Define Gradio interface
iface = gr.Interface(
    fn=transcribe_audio,
    inputs=[
        gr.Audio(type="filepath", label="Upload Audio"),
        gr.Dropdown(["en", "zh", "ja"], label="Select Language", value="en")
    ],
    outputs=[
        gr.Textbox(label="Detected Language"),
        gr.Textbox(label="Transcription", lines=20)
    ],
    allow_flagging='never',
    title="Audio Transcription with Faster Whisper",
    description="Upload an audio file and select the language to transcribe the audio to text. Choose 'auto' for automatic language detection."
)

# Launch the interface
iface.launch()

4. 启动 Web UI

复制代码
python webui.py

5. 访问 Web UI

使用浏览器打开 http://localhost:7860

reference:

相关推荐
会飞的老朱17 分钟前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º2 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee4 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º4 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys5 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56785 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子5 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能5 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144875 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile5 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算