本地部署 faster-whisper

本地部署 faster-whisper

  • [1. 创建虚拟环境](#1. 创建虚拟环境)
  • [2. 安装依赖模块](#2. 安装依赖模块)
  • [3. 创建 Web UI](#3. 创建 Web UI)
  • [4. 启动 Web UI](#4. 启动 Web UI)
  • [5. 访问 Web UI](#5. 访问 Web UI)

1. 创建虚拟环境

复制代码
conda create -n faster-whisper python=3.11 -y
conda activate faster-whisper

2. 安装依赖模块

复制代码
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
pip install faster-whisper
conda install matplotlib
pip install gradio

3. 创建 Web UI

复制代码
# webui.py
import gradio as gr
from faster_whisper import WhisperModel

# Initialize the model
# model_size = "large-v3"
model_size = "Systran/faster-whisper-large-v3"
model = WhisperModel(model_size, device="cuda", compute_type="float16")

def transcribe_audio(audio_file, language):
    # Transcribe the audio
    segments, info = model.transcribe(audio_file, beam_size=5, language=language)

    # Prepare the output
    transcription = ""
    for segment in segments:
        transcription += f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"

    detected_language = f"Detected language: {info.language} (probability: {info.language_probability:.2f})"

    return detected_language, transcription

# Define Gradio interface
iface = gr.Interface(
    fn=transcribe_audio,
    inputs=[
        gr.Audio(type="filepath", label="Upload Audio"),
        gr.Dropdown(["en", "zh", "ja"], label="Select Language", value="en")
    ],
    outputs=[
        gr.Textbox(label="Detected Language"),
        gr.Textbox(label="Transcription", lines=20)
    ],
    allow_flagging='never',
    title="Audio Transcription with Faster Whisper",
    description="Upload an audio file and select the language to transcribe the audio to text. Choose 'auto' for automatic language detection."
)

# Launch the interface
iface.launch()

4. 启动 Web UI

复制代码
python webui.py

5. 访问 Web UI

使用浏览器打开 http://localhost:7860

reference:

相关推荐
OAFD.23 分钟前
机器学习之线性回归:原理、实现与实践
人工智能·机器学习·线性回归
SHIPKING3932 小时前
【机器学习&深度学习】LMDeploy的分布式推理实现
人工智能·深度学习
mit6.8243 小时前
[RestGPT] docs | RestBench评估 | 配置与环境
人工智能·python
CareyWYR3 小时前
每周AI论文速递(250818-250822)
人工智能
门思科技3 小时前
LoRaWAN 的网络拓扑全解析:架构、原理与应用实践
服务器·网络·人工智能·科技·物联网·架构
兔子的倔强4 小时前
Transformer在文本、图像和点云数据中的应用——经典工作梳理
人工智能·深度学习·transformer
lxmyzzs5 小时前
【图像算法 - 21】慧眼识虫:基于深度学习与OpenCV的农田害虫智能识别系统
人工智能·深度学习·opencv·算法·yolo·目标检测·计算机视觉
Gloria_niki5 小时前
机器学习之K 均值聚类算法
人工智能·机器学习
AI人工智能+5 小时前
表格识别技术:通过图像处理与深度学习,将非结构化表格转化为可编辑结构化数据,推动智能化发展
人工智能·深度学习·ocr·表格识别
深圳多奥智能一卡(码、脸)通系统5 小时前
智能二维码QR\刷IC卡\人脸AI识别梯控系统功能设计需基于模块化架构,整合物联网、生物识别、权限控制等技术,以下是多奥分层次的系统设计框架
人工智能·门禁·电梯门禁·二维码梯控·梯控·电梯