比OpenAI的Whisper快50%,最新开源语音模型

生成式AI初创公司aiOla在官网开源了最新语音模型Whisper-Medusa,推理效率比OpenAI开源的Whisper快50%。

aiOla在Whisper的架构之上进行了修改采用了"多头注意力"机制的并行计算方法,允许模型在每个推理步骤中预测多个token,同时不会损失性能和识别准确率。

开源地址:

https://github.com/aiola-lab/whisper-medusa

huggingface:

https://huggingface.co/aiola/whisper-medusa-v1

传统的Transformer架构在生成序列时,是遵循逐个token的顺序预测过程。这意味着在生成新序列时,模型每次只能预测下一个token,然后将这个预测的token加入到序列中,再基于更新后的序列预测下一个token。

这虽然能够确保生成序列的连贯性和上下文相关性,但也有一个非常明显的缺陷------极大限制了模型的推理效率

此外,由于每次只能处理一个 token ,模型难以捕捉到数据中的长程依赖关系,可能会忽略一些重要的全局信息,从而影响模型的整体性能和准确性。

Whisper-Medusa使用了10头的多注意力机制, 能各自独立地计算注意力分布并行地处理输入,然后将各自的输出通过拼接的方式组合起来,形成一个多维度的向量。

随后向量被送入全连接层进行进一步的处理,以生成最终的token预测。这种并行的数据处理方式不仅加快了模型的推理效率,还增加了模型的表达能力,因为每个注意力头都可以专注于序列的不同子集,捕捉到更丰富的上下文信息。

为了使多头注意力机制在Whisper-Medusa模型中更高效地运行,aiOla采用了弱监督的方法,在训练过程中冻结了原Whisper模型的主要组件,使用该模型生成的音频转录作为伪标签来训练额外的token预测模块

使得模型即便没有大量手动人工标注数据的情况下,依然能够学习到有效的语音识别模式。

此外在训练过程中,Whisper-Medusa的损失函数需要同时考虑预测的准确性和效率。一方面,模型需要确保预测的token序列与实际转录尽可能一致;

另一方面,通过多头注意力机制的并行预测,模型被鼓励在保证精度的前提下,尽可能地加快预测效率。

aiOla使用了学习率调度、梯度裁剪、正则化等多种方法,确保模型在训练过程中能够稳定收敛,同时避免过拟合性。

业务场景方面, Whisper-Medusa能理解100多种语言,用户可以开发音频转录、识别等多种应用,适用于翻译、金融、旅游、物流、仓储等行业。

aiOla表示,未来会将Whisper-Medusa的多注意力机制扩展至20个头,其推理效率将再次获得大幅度提升。

相关推荐
数据饕餮14 天前
Faster-Whisper命令和意图识别程序设计调优:上下文感知和领域词汇增强
whisper
落淼喵_G14 天前
ubuntu部署whisper+speaker_large+qwen【一】
ubuntu·whisper
兔兔爱学习兔兔爱学习15 天前
浏览器端实时语音采集 + WebSocket 传输 + 后端 Whisper + GPT 翻译 + 实时字幕返回
gpt·websocket·whisper
兔兔爱学习兔兔爱学习15 天前
一个可本地运行的实时字幕翻译 Demo(Whisper + GPT + Streamlit),可以边说边出中英文字幕
gpt·whisper
数据饕餮16 天前
Faster-Whisper唤醒词检测程序设计实战1
whisper
说话的鲸鱼16 天前
‌Whisper模型在RTranslator中的实时语音识别优化:动态资源分配与负载均衡
whisper·负载均衡·语音识别
猫头虎24 天前
DeepSeek刚刚开源了一个3B的 OCR模型:什么是DeepSeek-OCR?单张A100-40G每天可以处理20万+页文档
人工智能·开源·whisper·prompt·aigc·ocr·gpu算力
星野云联AIoT技术洞察1 个月前
2025年语音识别(ASR)与语音合成(TTS)技术趋势分析对比
whisper·语音识别·模型部署·tts·asr·嵌入式ai·naturalspeech3
共绩算力1 个月前
OpenAI Whisper 语音识别模型:技术与应用全面分析
人工智能·whisper·语音识别·共绩算力
人工智能技术派1 个月前
Whisper推理源码解读
人工智能·语言模型·whisper·语音识别