BERT微调

一、微调BERT

1、BERT对每一个词元返回抽取了上下文信息的特征向量

2、不同的任务使用不同的特性

二、句子分类

1、将<cls>对应的向量输入到全连接层分类

三、命名实体识别

1、识别一个词是不是命名实体,比如人名、机构、位置等

2、将非特殊词源放进全连接分类(除开<cls>、<seq>)

四、问题回答

1、为了微调BERT进行问答,在BERT的输入中,将问题和段落分别作为第一个和第二个文本序列;我们只拿回答的那部分句子进行提取特征。

2、给定一个问题和描述文字,找到一个片段作为回答;

3、对片段中的每一个词预测它是不是回答的开头或者结束或者都不是,三分类问题

五、总结

1、任务不同,输入的表示和使用的BERT特征也会不一样

2、对于序列级和词元级自然语言处理应用,BERT只需要最小的架构改变(增加需要训练的输出层),如单个文本分类(例如,情感分析和测试语言可接受性)、文本对分类或回归(例如,自然语言推断和语义文本相似性)、文本标记(例如,词性标记)和问答。

3、在下游应用的监督学习期间,额外层的参数是从零开始学习的,而预训练BERT模型中的所有参数都是微调的。

六、斯坦福自然语言推断(SNLI)数据集

1、下载数据集

复制代码
import os
import re
import torch
from torch import nn
from d2l import torch as d2l

#@save
d2l.DATA_HUB['SNLI'] = (
    'https://nlp.stanford.edu/projects/snli/snli_1.0.zip',
    '9fcde07509c7e87ec61c640c1b2753d9041758e4')

data_dir = d2l.download_extract('SNLI')

2、读取数据集

复制代码
#@save
def read_snli(data_dir, is_train):
    """将SNLI数据集解析为前提、假设和标签"""
    def extract_text(s):
        # 删除我们不会使用的信息
        s = re.sub('\\(', '', s)
        s = re.sub('\\)', '', s)
        # 用一个空格替换两个或多个连续的空格
        s = re.sub('\\s{2,}', ' ', s)
        return s.strip()
    #预测三元组
    label_set = {'entailment': 0, 'contradiction': 1, 'neutral': 2}
    file_name = os.path.join(data_dir, 'snli_1.0_train.txt'
                             if is_train else 'snli_1.0_test.txt')
    with open(file_name, 'r') as f:
        rows = [row.split('\t') for row in f.readlines()[1:]]
    premises = [extract_text(row[1]) for row in rows if row[0] in label_set]
    hypotheses = [extract_text(row[2]) for row in rows if row[0] \
                in label_set]
    labels = [label_set[row[0]] for row in rows if row[0] in label_set]
    #返回前提、假说、标签
    return premises, hypotheses, labels

3、定义用于加载数据集的类

复制代码
#@save
class SNLIDataset(torch.utils.data.Dataset):
    """用于加载SNLI数据集的自定义数据集"""
    def __init__(self, dataset, num_steps, vocab=None):
        self.num_steps = num_steps
        all_premise_tokens = d2l.tokenize(dataset[0])
        all_hypothesis_tokens = d2l.tokenize(dataset[1])
        #构建或使用现有的词汇表
        if vocab is None:
            self.vocab = d2l.Vocab(all_premise_tokens + \
                all_hypothesis_tokens, min_freq=5, reserved_tokens=['<pad>'])
        else:
            self.vocab = vocab
        #填充前提与假设
        self.premises = self._pad(all_premise_tokens)
        self.hypotheses = self._pad(all_hypothesis_tokens)
        #将标签转换为张量
        self.labels = torch.tensor(dataset[2])
        print('read ' + str(len(self.premises)) + ' examples')

    def _pad(self, lines):
        return torch.tensor([d2l.truncate_pad(
            self.vocab[line], self.num_steps, self.vocab['<pad>'])
                         for line in lines])

    def __getitem__(self, idx):
        return (self.premises[idx], self.hypotheses[idx]), self.labels[idx]

    def __len__(self):
        return len(self.premises)

4、整合代码

复制代码
#@save
def load_data_snli(batch_size, num_steps=50):
    """下载SNLI数据集并返回数据迭代器和词表"""
    num_workers = d2l.get_dataloader_workers()
    data_dir = d2l.download_extract('SNLI')
    train_data = read_snli(data_dir, True)
    test_data = read_snli(data_dir, False)
    train_set = SNLIDataset(train_data, num_steps)
    test_set = SNLIDataset(test_data, num_steps, train_set.vocab)
    train_iter = torch.utils.data.DataLoader(train_set, batch_size,
                                             shuffle=True,
                                             num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(test_set, batch_size,
                                            shuffle=False,
                                            num_workers=num_workers)
    return train_iter, test_iter, train_set.vocab

5、总结

(1)自然语言推断研究"假设"是否可以从"前提"推断出来,其中两者都是文本序列。

(2)在自然语言推断中,前提和假设之间的关系包括蕴涵关系、矛盾关系和中性关系。

(3)斯坦福自然语言推断(SNLI)语料库是一个比较流行的自然语言推断基准数据集。

七、自然语言推理:微调BERT

1、加载预训练的BERT

复制代码
d2l.DATA_HUB['bert.base'] = (d2l.DATA_URL + 'bert.base.torch.zip',
                             '225d66f04cae318b841a13d32af3acc165f253ac')
d2l.DATA_HUB['bert.small'] = (d2l.DATA_URL + 'bert.small.torch.zip',
                              'c72329e68a732bef0452e4b96a1c341c8910f81f')

2、加载预先训练好的BERT参数

复制代码
def load_pretrained_model(pretrained_model, num_hiddens, ffn_num_hiddens,
                          num_heads, num_layers, dropout, max_len, devices):
    data_dir = d2l.download_extract(pretrained_model)
    # 定义空词表以加载预定义词表
    vocab = d2l.Vocab()
    vocab.idx_to_token = json.load(open(os.path.join(data_dir,'vocab.json')))
    vocab.token_to_idx = {token: idx for idx, token in enumerate(vocab.idx_to_token)}
    bert = d2l.BERTModel(len(vocab), num_hiddens, norm_shape=[256],
                         ffn_num_input=256, ffn_num_hiddens=ffn_num_hiddens,
                         num_heads=4, num_layers=2, dropout=0.2,
                         max_len=max_len, key_size=256, query_size=256,
                         value_size=256, hid_in_features=256,
                         mlm_in_features=256, nsp_in_features=256)
    # 加载预训练BERT参数
    bert.load_state_dict(torch.load(os.path.join(data_dir,'pretrained.params')))
    return bert, vocab
复制代码
devices = d2l.try_all_gpus()
bert, vocab = load_pretrained_model(
    'bert.small', num_hiddens=256, ffn_num_hiddens=512, num_heads=4,
    num_layers=2, dropout=0.1, max_len=512, devices=devices)

3、微调BERT的数据集

复制代码
class SNLIBERTDataset(torch.utils.data.Dataset):
    def __init__(self, dataset, max_len, vocab=None):
        #处理前提和假设的词元
        all_premise_hypothesis_tokens = [[
            p_tokens, h_tokens] for p_tokens, h_tokens in zip(
            *[d2l.tokenize([s.lower() for s in sentences])
              for sentences in dataset[:2]])]

        self.labels = torch.tensor(dataset[2])
        self.vocab = vocab
        self.max_len = max_len
        #预处理数据
        (self.all_token_ids, self.all_segments,
         self.valid_lens) = self._preprocess(all_premise_hypothesis_tokens)
        print('read ' + str(len(self.all_token_ids)) + ' examples')

#使用多进程池对数据进行并行处理。将处理后的 token_ids, segments 和 valid_le 转换为张量。    
def _preprocess(self, all_premise_hypothesis_tokens):
        pool = multiprocessing.Pool(4)  # 使用4个进程
        out = pool.map(self._mp_worker, all_premise_hypothesis_tokens)
        all_token_ids = [token_ids for token_ids, segments, valid_len in out]
        all_segments = [segments for token_ids, segments, valid_len in out]
        valid_lens = [valid_len for token_ids, segments, valid_len in out]
        return (torch.tensor(all_token_ids, dtype=torch.long),
                torch.tensor(all_segments, dtype=torch.long),
                torch.tensor(valid_lens))

#多进程工作函数    
def _mp_worker(self, premise_hypothesis_tokens):
        p_tokens, h_tokens = premise_hypothesis_tokens
        self._truncate_pair_of_tokens(p_tokens, h_tokens)
        tokens, segments = d2l.get_tokens_and_segments(p_tokens, h_tokens)
        token_ids = self.vocab[tokens] + [self.vocab['<pad>']] \
                             * (self.max_len - len(tokens))
        segments = segments + [0] * (self.max_len - len(segments))
        valid_len = len(tokens)
        return token_ids, segments, valid_len

#对前提和假设进行截断,使其总长度不超过 max_len - 3,为 BERT 的特殊词元 <CLS> 和 <SEP> 保留位置。    
def _truncate_pair_of_tokens(self, p_tokens, h_tokens):
        # 为BERT输入中的'<CLS>'、'<SEP>'和'<SEP>'词元保留位置
        while len(p_tokens) + len(h_tokens) > self.max_len - 3:
            if len(p_tokens) > len(h_tokens):
                p_tokens.pop()
            else:
                h_tokens.pop()

    def __getitem__(self, idx):
        return (self.all_token_ids[idx], self.all_segments[idx],
                self.valid_lens[idx]), self.labels[idx]

    def __len__(self):
        return len(self.all_token_ids)

4、实例化SNLIBERTDataset类来生成训练和测试样本

复制代码
# 如果出现显存不足错误,请减少“batch_size”。在原始的BERT模型中,max_len=512
batch_size, max_len, num_workers = 512, 128, d2l.get_dataloader_workers()
data_dir = d2l.download_extract('SNLI')
train_set = SNLIBERTDataset(d2l.read_snli(data_dir, True), max_len, vocab)
test_set = SNLIBERTDataset(d2l.read_snli(data_dir, False), max_len, vocab)
train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,
                                   num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(test_set, batch_size,
                                  num_workers=num_workers)

5、微调BERT

复制代码
class BERTClassifier(nn.Module):
    def __init__(self, bert):
        super(BERTClassifier, self).__init__()
        self.encoder = bert.encoder
        self.hidden = bert.hidden
        self.output = nn.Linear(256, 3)

    def forward(self, inputs):
        tokens_X, segments_X, valid_lens_x = inputs
        encoded_X = self.encoder(tokens_X, segments_X, valid_lens_x)
        return self.output(self.hidden(encoded_X[:, 0, :]))

6、总结

(1)我们可以针对下游应用对预训练的BERT模型进行微调,例如在SNLI数据集上进行自然语言推断。

(2)在微调过程中,BERT模型成为下游应用模型的一部分。仅与训练前损失相关的参数在微调期间不会更新。

相关推荐
深圳南柯电子11 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ12 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter008817 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖23 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
qq_5290252941 分钟前
Torch.gather
python·深度学习·机器学习
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232922 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家2 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发