立体相机镜面重建(一)镜面标定

无论是单目、双目或者是多屏幕镜面重建,都需要事先对屏幕和相机的相对位置进行标定,求得相机到屏幕之间的相对变换关系。如果求得屏幕和相机之间的变换关系呢?接下来是标定流程。

(一)准备:

1)生成1920*1080像素的标定板

复制代码
// 生成棋盘格图像
void genChessBoardBmp()
{
    const int perBoardPixel = 70;
    const cv::Size boardSize(11, 9);
    const cv::Size resolution(1920,1080);
    {
        int basisHeight = (resolution.height - perBoardPixel * boardSize.height) / 2;
        int basisWidth = (resolution.width - perBoardPixel * boardSize.width) / 2;
        if (basisHeight < 0 || basisWidth < 0)
        {
            //cout << "Resolution doesn't match!" << endl;
        }
        cv::Mat image(1080,1920, CV_8UC1, cv::Scalar::all(255));
        int flag = 0;
        for (int j = 0; j < boardSize.height; j++)
        {
            for (int i = 0; i < boardSize.width; i++)
            {
                flag = (i + j) % 2;
                if (flag == 0)
                {
                    for (int n = j * perBoardPixel; n < (j + 1) * perBoardPixel; n++)
                        for (int m = i * perBoardPixel; m < (i + 1) * perBoardPixel; m++)
                            image.at<uchar>(n + basisHeight, m + basisWidth) = 0;
                }
            }
        }
        //cv::imshow("haha",image);
        std::string strSavePath = std::string("H") + std::to_string(boardSize.width) + "_V" + std::to_string(boardSize.height) + "_" +
            std::to_string(perBoardPixel) + ".bmp";
        cv::imwrite(strSavePath, image);
        //cv::waitKey(0);
    }
}

2)购买棋盘格或者圆点标定板

3)购买高精度平面镜子

4)购买一个屏幕

(二)标定过程:

(1)使用购买的棋盘格或者圆点标定板对单目相机标定,或者双目相机标定

(2)放置镜子,让相机采集到屏幕上的棋盘格图案。放置至少三个位置,采集至少三张图像。

(3)使用参考文章中的标定方法,通过三张采集图像计算得到屏幕到相机的旋转、平移变换矩阵。

(4)使用相机到虚像的旋转和平移矩阵,以及屏幕到相机的旋转、平移矩阵,计算剩下n张图像的镜面距离和法向。

(5)全局优化,优化(屏幕到相机的旋转和平移矩阵,每一个图像下的镜子法向和相机中心到镜子的距离)

(三)结果:

1.标定结果如下:

全局优化结果,第一列是图像编号,第二列是棋盘格点编号,第三列是投影误差,可以看到标定误差基本都在0.1个像素之内。

2.第0副屏幕、相机、镜子、虚像之间的关系显示:

B点的夹角是180度,表示,A,B,C是在一条直线上的。

距离一致

垂直法向一致

3.验证法向

可以看到acos求角平分线和法向之间的反余弦值,发现是吻合的。

(四)注意事项:

1.相机标定的时候,标定板的精度一定要高一点,如果不高,我发现在标定过程中,如果相机标定误差是镜面标定误差的3倍的时候,优化出来的镜子大小和相机到镜子之间的距离也会发现严重的失真,发生等比例缩放【笑哭】,一直找不到问题,后来发现是这个问题。

2.一定不要放弃。

参考文章:

Flexible geometrical calibration for fringe-reflection 3D measurement

fringe-reflection photogrammetry based on poses calibration with planar mirror reflection

相关推荐
光影少年18 小时前
angular生态及学习路线
前端·学习·angular.js
逆小舟1 天前
【C/C++】指针
c语言·c++·笔记·学习
武文斌771 天前
项目学习总结:LVGL图形参数动态变化、开发板的GDB调试、sqlite3移植、MQTT协议、心跳包
linux·开发语言·网络·arm开发·数据库·嵌入式硬件·学习
递归不收敛1 天前
吴恩达机器学习课程(PyTorch适配)学习笔记:1.3 特征工程与模型优化
pytorch·学习·机器学习
kunge1v51 天前
学习爬虫第四天:多任务爬虫
爬虫·python·学习·beautifulsoup
哲Zheᗜe༘1 天前
了解学习MySQL数据库基础
数据库·学习·mysql
peter67681 天前
pandas学习小结
学习·pandas
机器视觉知识推荐、就业指导1 天前
STM32 外设驱动模块【含代码】:SG90 舵机模块
stm32·单片机·嵌入式硬件·学习
暴富奥利奥1 天前
完成docker方式的ros环境配置
linux·学习·docker·容器
总有刁民想爱朕ha1 天前
AI大模型学习(17)python-flask AI大模型和图片处理工具的从一张图到多平台适配的简单方法
人工智能·python·学习·电商图片处理