[python]使用Pandas处理多个Excel文件并汇总数据

在数据分析和处理过程中,经常需要处理多个Excel文件,并将其中的数据进行汇总和分析。本文介绍使用Python的Pandas库来读取多个Excel文件,并汇总不同类型的数据,例如员工工资、工件数量等。

代码示例

以下是一个完整的代码示例,展示了如何读取指定目录下的所有Excel文件,并对其中的数据进行处理和汇总:

python 复制代码
import pandas as pd
import os

# 设定存放Excel文件的目录路径
directory = r'C:\Users\Desktop\py计算'

# 创建一个空的列表用于存储所有记录DataFrame
all_data_frames = []

# 遍历目录中的所有Excel文件
for filename in os.listdir(directory):
    if filename.endswith(".xls"):
        file_path = os.path.join(directory, filename)
        # 读取Excel文件,从第六行开始,忽略前五行
        data = pd.read_excel(file_path, skiprows=4, engine='xlrd')
        # 去除特定列中的逗号并转换为数值格式,无法转换的设置为NaN
        data['存额'] = data['存额'].str.replace(',', '').astype(float)
        print(data)
        # 将读取到的DataFrame添加到列表中
        all_data_frames.append(data)

# 使用pd.concat将所有DataFrame合并成一个
all_data = pd.concat(all_data_frames, ignore_index=True)

# 计算每个员工的工资之和
salary_sum = all_data.groupby('证件号码')['存额'].sum().round(2).reset_index()

# 获取每个员工的其他信息(例如部门和职位)
employee_info = all_data[['姓名', '证件\n类型', '证件号码']].drop_duplicates(subset=['证件号码'])

# 合并工资之和和其他信息
result = pd.merge(salary_sum, employee_info, on='证件号码', how='left')

# 如果需要保存结果到新的Excel文件
result.to_excel('汇总带信息.xlsx', sheet_name='之和', index=False)

代码解析

  1. 导入必要的库:首先,我们需要导入Pandas库和os库。
  2. 设定目录路径:指定存放Excel文件的目录路径。
  3. 创建空列表:用于存储所有记录的DataFrame。
  4. 遍历目录中的Excel文件 :使用os.listdir遍历目录中的所有文件,并筛选出以.xls结尾的Excel文件。
  5. 读取Excel文件 :使用pd.read_excel读取Excel文件,从第六行开始,忽略前五行。
  6. 数据清洗:去除特定列中的逗号并转换为数值格式,无法转换的设置为NaN。
  7. 合并所有DataFrame :使用pd.concat将所有DataFrame合并成一个。

关键函数

  1. groupbygroupby函数用于将数据分组,以便对每个组进行聚合操作。在本例中,按证件号码分组,并计算每个员工的工资之和。

    python 复制代码
    salary_sum = all_data.groupby('证件号码')['存额'].sum().round(2).reset_index()
  2. reset_indexreset_index函数用于重置索引,将分组后的结果转换为DataFrame。在本例中,我们在计算工资之和后使用reset_index将结果转换为DataFrame。

    python 复制代码
    salary_sum = all_data.groupby('证件号码')['存额'].sum().round(2).reset_index()
  3. mergemerge函数用于合并两个DataFrame。在本例中,我们将工资之和与员工的其他信息合并。

    python 复制代码
    result = pd.merge(salary_sum, employee_info, on='证件号码', how='left')
  4. drop_duplicatesdrop_duplicates函数用于删除重复的行。在本例中,我们获取每个员工的其他信息,并删除重复的记录。

    python 复制代码
    employee_info = all_data[['姓名', '证件\n类型', '证件号码']].drop_duplicates(subset=['证件号码'])

通过以上步骤读取多个Excel文件,并对其中的数据进行处理和汇总。这种方法不仅适用于工资数据,还可以应用于其他类型的数据,例如工件数量、销售额等。这样可以提高数据处理的效率,适用于各种数据分析和处理场景。

相关推荐
信创天地29 分钟前
信创国产化数据库的厂商有哪些?分别用在哪个领域?
数据库·python·网络安全·系统架构·系统安全·运维开发
不哦罗密经43 分钟前
python相关
服务器·前端·python
happybasic1 小时前
python字典中字段重复性的分析~~
开发语言·python
山海青风1 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 6 模型训练
人工智能·python·机器学习
l木本I1 小时前
Reinforcement Learning for VLA(强化学习+VLA)
c++·人工智能·python·机器学习·机器人
颖风船1 小时前
锂电池SOC估计的一种算法(改进无迹卡尔曼滤波)
python·算法·信号处理
94620164zwb51 小时前
应用设置模块 Cordova 与 OpenHarmony 混合开发实战
python
551只玄猫1 小时前
KNN算法基础 机器学习基础1 python人工智能
人工智能·python·算法·机器学习·机器学习算法·knn·knn算法
tang777892 小时前
Python爬虫代理,选短效IP还是长效IP?
爬虫·python·tcp/ip
醉卧考场君莫笑2 小时前
EXCEL数据分析基础(没有数据统计和数据可视化)
信息可视化·数据分析·excel