评论如何批量获取,如何获得回复评论,大家相互交流

复制代码
import json
import requests

headers = {
    'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
    'referer':'https://www.douyin.com/channel/300203?modal_id=7370895688999111972',
    'cookie':''
}
# cursor=0
while True:
    # print(cursor)
    url = 'https://www.douyin.com/aweme/v1/web/comment/list/?device_platform=webapp&aid=6383&channel=channel_pc_web&aweme_id=7370895688999111972&cursor=20&count=20&item_type=0&insert_ids=&whale_cut_token=&cut_version=1&rcFT=&update_version_code=170400&pc_client_type=1&version_code=170400&version_name=17.4.0&cookie_enabled=true&screen_width=1536&screen_height=864&browser_language=zh-CN&browser_platform=Win32&browser_name=Chrome&browser_version=127.0.0.0&browser_online=true&engine_name=Blink&engine_version=127.0.0.0&os_name=Windows&os_version=10&cpu_core_num=16&device_memory=8&platform=PC&downlink=10&effective_type=4g&round_trip_time=50&webid=7402234732509021711&verifyFp=verify_lzqzv2wr_4331ca96_569d_ee6a_4a6e_03697fa48a19&fp=verify_lzqzv2wr_4331ca96_569d_ee6a_4a6e_03697fa48a19&msToken=NZG2sEH89Nb1nLAkTognx03HedQXJTanV5rTTmWPdKtqY7Q1d_L8Jc6OD8h-nfT_bh5oNehCMeahZIn_hTilL24s8PJMT1ZYpGGAkeFMtr44-pHHwqe2grjZI6AUVjI%3D&a_bogus=QvWh%2F5zkdkgi6DyX5WcLfY3q6-F3YQtC0trEMD2fhd3rt639HMPA9exLHX4vMXSjN4%2FkIb6jy4htYrBMicIjA3v6HSRKl2Ck-g00t-P2so0j5ZhjCfuDrURF-vzWt-Bd-Jd3iQ4hy7dbFuRplnAJ5k1cthMea4R%3D'
    response = requests.get(url,headers=headers)
    context = json.loads(response.text)
    for comment_list in context['comments']:
        # print(comment_list)
        com_text = comment_list['text']
        com_addr = comment_list['ip_label']
        com_user = comment_list['user']['nickname']
        com_repl = comment_list['reply_comment_total']
        print(f'{com_addr}【{com_user}】说:"{com_text}"有{com_repl}回复:')

        if com_repl:
            recom_id = comment_list['cid']
            com_id = comment_list['aweme_id']

            while True:
                replyurl ='https://www.douyin.com/aweme/v1/web/comment/list/reply/?device_platform=webapp&aid=6383&channel=channel_pc_web&item_id=7370895688999111972&comment_id=7371293072783704868&cut_version=1&cursor=0&count=3&item_type=0&update_version_code=170400&pc_client_type=1&version_code=170400&version_name=17.4.0&cookie_enabled=true&screen_width=1536&screen_height=864&browser_language=zh-CN&browser_platform=Win32&browser_name=Chrome&browser_version=127.0.0.0&browser_online=true&engine_name=Blink&engine_version=127.0.0.0&os_name=Windows&os_version=10&cpu_core_num=16&device_memory=8&platform=PC&downlink=10&effective_type=4g&round_trip_time=50&webid=7402234732509021711&verifyFp=verify_lzqzv2wr_4331ca96_569d_ee6a_4a6e_03697fa48a19&fp=verify_lzqzv2wr_4331ca96_569d_ee6a_4a6e_03697fa48a19&msToken=wyrRvp4Xh7HpCdYO5HF9EmJFlSpLtlgIEGQN37Ub7VjuKyM6stBhastl9zeH6tXcOII6OJ4ve_CRIqfRrfl1m-OJOWkuTwRof_RQRorbzM4u4FIEFPRaq__NGJfMNZ0%3D&a_bogus=mX8qQ5uXdkgivf6X5WcLfY3q61e3YQto0trEMD2fwn3ro639HMPH9exLH6Gv61RjN4%2FkIb6jy4htYrBMicIjA3v6HSRKl2Ck-g00t-P2so0j5ZhjCfuDrURF-vzWt-Bd-Jd3iQ4hy7dbFuRplnAJ5k1cthMeaUg%3D'

                response1 = requests.get(replyurl,headers=headers)
                context1 = json.loads(response1.text)
                 # print(context)
                has_more = context1['has_more']
                count = 0
                for recomment_list in context1['comments']:
                    recom_text = recomment_list['text']
                    recom_user = recomment_list['user']['nickname']
                    recom_addr = recomment_list['ip_label']
                    recom_tot = recomment_list['comment_reply_total']
                    if count < recom_tot:
                        print(f'\t{count}{recom_addr}【{recom_user}】回复说:"re{recom_text}"')
                    count +=1

    else:
        break
相关推荐
noravinsc2 分钟前
django 一个表中包括id和parentid,如何通过parentid找到全部父爷id
python·django·sqlite
ajassi200013 分钟前
开源 python 应用 开发(三)python语法介绍
linux·python·开源·自动化
沉默媛35 分钟前
如何安装python以及jupyter notebook
开发语言·python·jupyter
Deng9452013142 小时前
基于Python的旅游数据可视化应用
python·numpy·pandas·旅游·数据可视化技术
2401_878624792 小时前
pytorch 自动微分
人工智能·pytorch·python·机器学习
胖达不服输2 小时前
「日拱一码」021 机器学习——特征工程
人工智能·python·机器学习·特征工程
screenCui3 小时前
macOS运行python程序遇libiomp5.dylib库冲突错误解决方案
开发语言·python·macos
小眼睛羊羊3 小时前
pyinstaller打包paddleocr
python
java1234_小锋3 小时前
基于Python的旅游推荐协同过滤算法系统(去哪儿网数据分析及可视化(Django+echarts))
python·数据分析·旅游
蓝婷儿3 小时前
Python 机器学习核心入门与实战进阶 Day 4 - 支持向量机(SVM)原理与分类实战
python·机器学习·支持向量机