如何调试QWEN-1.8B模型的prompt来达到预期效果

这一段时间都在学习与预研大模型技术,目前采用的模型是用hugging-face上的Qwen-1.8B参数级别的模型, 本地部署启动, AMD 630 16G显卡,启动与推理都没什么压力

这几天碰到一个比较有意思的问题, 我想通过使用模型的NLP能力来进行意图分析,通过构造提示词模版来达到预期效果:

如图, 想让大模型按照我的提问来返回对应的答案,在实际使用场景中, 正确率只有50-60%左右,

很多时候会与模版中的希望返回的答案不匹配,同样的问题在通义千问的官网的回答基本都是准确的:

不知道有没有了解的大佬们看下到底是什么原因引起的这种问题,是要调整prompt还是要调整模型的参数?

相关推荐
alex1001 天前
AI Agent开发学习系列 - langchain之LCEL(5):如何创建一个Agent?
人工智能·python·语言模型·langchain·prompt·向量数据库·ai agent
liliangcsdn1 天前
mac测试ollama llamaindex
数据仓库·人工智能·prompt·llama
旧曲重听13 天前
基于Prompt 的DevOps 与终端重塑
人工智能·prompt·devops
AIGC包拥它4 天前
RAG项目实战:LangChain 0.3集成 Milvus 2.5向量数据库,构建大模型智能应用
人工智能·python·langchain·prompt·个人开发·milvus
so.far_away5 天前
The Survey of Few-shot Prompt Learning on Graph
prompt
Xy-unu5 天前
[Semantic Seg][KD]FreeKD: Knowledge Distillation via Semantic Frequency Prompt
prompt
寒水馨6 天前
构建企业级 AI Agent:不只是 Prompt 工程,更是系统工程
人工智能·ai·prompt·agent·ai agent·ai工程
semantist@语校7 天前
面向向量检索的教育QA建模:九段日本文化研究所日本语学院的Prompt策略分析(6 / 500)
人工智能·支持向量机·百度·ai·开源·prompt·数据集
Chan167 天前
【 SpringAI核心特性 | Prompt工程 】
java·spring boot·后端·spring·prompt·ai编程
喜欢猪猪7 天前
Qwen3-8B 的 TTFT 性能分析:16K 与 32K 输入 Prompt 的推算公式与底层原理详解
prompt