如何调试QWEN-1.8B模型的prompt来达到预期效果

这一段时间都在学习与预研大模型技术,目前采用的模型是用hugging-face上的Qwen-1.8B参数级别的模型, 本地部署启动, AMD 630 16G显卡,启动与推理都没什么压力

这几天碰到一个比较有意思的问题, 我想通过使用模型的NLP能力来进行意图分析,通过构造提示词模版来达到预期效果:

如图, 想让大模型按照我的提问来返回对应的答案,在实际使用场景中, 正确率只有50-60%左右,

很多时候会与模版中的希望返回的答案不匹配,同样的问题在通义千问的官网的回答基本都是准确的:

不知道有没有了解的大佬们看下到底是什么原因引起的这种问题,是要调整prompt还是要调整模型的参数?

相关推荐
weixin_446260851 天前
如何与AI对话,写好Prompt
人工智能·prompt
匹马夕阳1 天前
大模型(LLM)提示工程(Prompt Engineering)初识
人工智能·语言模型·prompt
AIGC大时代1 天前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
engchina1 天前
多模态抽取图片信息的 Prompt
prompt·多模态·抽取图片信息
SomeB1oody3 天前
获取OpenAI官方给ChatGPT的系统定义Prompt
人工智能·语言模型·chatgpt·prompt
旷野..4 天前
GPT 时代,精进编程思维 + 熟练 Prompt 是否是新的编程范式?
python·gpt·prompt
AIzealot无4 天前
论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)
人工智能·语言模型·自然语言处理·prompt·提示词
confiself4 天前
大模型系列——投机解码:Prompt Lookup Decoding代码解读
prompt
杨过过儿4 天前
【Prompt Engineering】7 聊天机器人
人工智能·机器人·prompt
学习前端的小z4 天前
【AIGC】ChatGPT 结构化 Prompt 的高级应用
chatgpt·prompt·aigc