Tensorflow 2.16.0+在PyCharm中找不到keras的报错解决

在PyCharm(2024.2版本)中,直接使用from tensorflow import keras会提示"Cannot find reference 'keras' in 'init .py' ",找不到keras,如下图所示。

查阅相关资料,可以发现在tf2.16之后,默认的keras后端升级为了3.0,且直接引用即可。

参考链接:PyCharm cannot parse any content under tensorflow.keras 2.16.2 #73110

以及:Introducing Keras 3.0

TF 2.15: Keras2.0

python 复制代码
import tensorflow as tf
from tensorflow import keras

TF 2.16: Keras 3.0

python 复制代码
import tensorflow as tf
import keras

reddit上也有人讨论:

Because in the old days Keras was entirely separate to Tensorflow. It had a backend for Theano and maybe some other stuff. Then Francois and the TF team at Google decided to bring Keras into TF as their main high level API, trying to address the fragmentation that had been created in TF land. Since TF usage is dwindling in research, and possibly showing signs of similar in industry, Keras is now multi-backend again, supporting TensorFlow, PyTorch, and JAX.

  1. Very old code will import keras directly, and be referring to Keras 1. This code will usually use > Theano or TensorFlow 1.x as well.
  2. More recent code will import tensorflow.keras and be referring to Keras 2. This is the majority of the code you'll find.
  3. Very recent code (i.e. this year I think) will import keras directly again, or maybe keras_core, and be referring to Keras 3, the latest version.

也就是说,在最新版(2.16.0+)的Tensorflow中,只需要直接引用import keras即可正常使用keras3.0。经测试,使用keras.modelskeras.layers均可正常使用,也会有代码补全。

相关推荐
洛克大航海5 小时前
PyCharm 软件关联 GitHub 账户
ide·pycharm·github
yanxiaoyu1101 天前
Pycharm远程调用Autodl进行训练(关机后不影响)
ide·python·pycharm
云和数据.ChenGuang1 天前
Python 3.14 与 PyCharm 2025.2.1 的调试器(PyDev)存在兼容性问题
开发语言·python·pycharm
怪兽20141 天前
PyCharm如何像其他idea软件跨行选择文本
ide·pycharm·intellij-idea
MediaTea1 天前
Python 第三方库:TensorFlow(深度学习框架)
开发语言·人工智能·python·深度学习·tensorflow
Lhuu(重开版2 天前
CSS从0到1
前端·css·tensorflow
李昊哲小课2 天前
cuda12 cudnn9 tensorflow 显卡加速
人工智能·python·深度学习·机器学习·tensorflow
奔跑的石头_2 天前
实践案例 - 使用Python和TensorFlow构建简单的图像分类模型
tensorflow
盼小辉丶2 天前
TensorFlow深度学习实战(43)——TensorFlow.js
javascript·深度学习·tensorflow