Elasticsearch用法

💥 该系列属于【SpringBoot基础】专栏,如您需查看其他SpringBoot相关文章,请您点击左边的连接

目录

一、初识elasticsearch

[1. 安装Elasticsearch和Kibana](#1. 安装Elasticsearch和Kibana)

[2. 倒排索引](#2. 倒排索引)

[3. IK分词器](#3. IK分词器)

[4. 基础概念](#4. 基础概念)

二、索引库操作

[1. Mapping映射属性](#1. Mapping映射属性)

[2. 索引库的CRUD](#2. 索引库的CRUD)

三、文档操作

[1. 新增文档POST](#1. 新增文档POST)

[2. 查询文档GET](#2. 查询文档GET)

[3. 删除文档DELETE](#3. 删除文档DELETE)

[4. 修改文档](#4. 修改文档)

[5. 批处理](#5. 批处理)

[6. 总结](#6. 总结)

四、RestAPI

[1. 初始化RestClient](#1. 初始化RestClient)

[2. 索引库操作](#2. 索引库操作)

[3. 文档操作](#3. 文档操作)

五、DSL查询

[1. 快速入门](#1. 快速入门)

[2. 叶子查询](#2. 叶子查询)

[3. 复合查询](#3. 复合查询)

[4. 排序](#4. 排序)

[5. 分页](#5. 分页)

(1)简单分页

(2)深度分页

[6. 高亮](#6. 高亮)

六、RestClient查询

[1. 快速入门](#1. 快速入门)

(1)发送请求

(2)解析响应结果

(3)完整代码

[2. 叶子查询](#2. 叶子查询)

[3. 复合查询](#3. 复合查询)

[4. 排序和分页](#4. 排序和分页)

[5. 高亮](#5. 高亮)

七、聚合

[1. DSL语法](#1. DSL语法)

[2. RestClient实现聚合](#2. RestClient实现聚合)


Elasticsearch结合Kibana、Logstash、Beats,是一整套技术栈,被叫做ELK。被广泛应用在日志数据分析、实时监控等领域。

一、初识elasticsearch

Elasticsearch提供核心的数据存储、搜索、分析功能的。Elasticsearch对外提供的是Restful风格的API,任何操作都可以通过发送http请求来完成。不过http请求的方式、路径、还有请求参数的格式都有严格的规范。这些规范我们肯定记不住,因此我们要借助于Kibana这个服务。

Kibana是elastic公司提供的用于操作Elasticsearch的可视化控制台。它的功能非常强大,包括:

  • 对Elasticsearch数据的搜索、展示

  • 对Elasticsearch数据的统计、聚合,并形成图形化报表、图形

  • 对Elasticsearch的集群状态监控

  • 它还提供了一个开发控制台(DevTools),在其中对Elasticsearch的Restful的API接口提供了语法提示

1. 安装Elasticsearch和Kibana

下面的Docker命令即可安装单机版本的elasticsearch:

bash 复制代码
docker run -d \
  --name es \
  -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
  -e "discovery.type=single-node" \
  -v es-data:/usr/share/elasticsearch/data \
  -v es-plugins:/usr/share/elasticsearch/plugins \
  --privileged \
  --network hmall \
  -p 9200:9200 \
  -p 9300:9300 \
  elasticsearch:7.12.1

访问http://192.168.88.128:9200/,即可看到响应的Elasticsearch服务的基本信息:

下面的Docker命令,即可部署Kibana:

bash 复制代码
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=hmall \
-p 5601:5601  \
kibana:7.12.1

安装完成后,直接访问http://192.168.88.128:5601,即可看到控制台页面:

选择Explore on my own之后,进入主页面:

然后选中Dev tools,进入开发工具页面:

2. 倒排索引

(1)正向索引

其中的id字段已经创建了索引,由于索引底层采用了B+树结构,因此我们根据id搜索的速度会非常快。

根据id精确匹配时,可以走索引,查询效率较高。而当搜索条件为模糊匹配时,由于索引无法生效,导致从索引查询退化为全表扫描,效率很差。

例如title,只在叶子节点上存在。搜索的时候只能遍历树中的每一个叶子节点,判断title数据是否符合要求。

正向索引适合于根据索引字段的精确搜索,不适合基于部分词条的模糊匹配。

而倒排索引恰好解决的就是根据部分词条模糊匹配的问题。

(2)倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息

  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

流程描述:

1)用户输入条件"华为手机"进行搜索。

2)对用户输入条件分词 ,得到词条:华为手机

3)拿着词条在倒排索引中查找(由于词条有索引,查询效率很高 ),即可得到包含词条的文档id:1、2、3

4)拿着文档id到正向索引中查找具体文档即可(由于id也有索引,查询效率也很高)。

(3)正向索引和倒排索引优缺点

正向索引

  • 优点:

    • 可以给多个字段创建索引

    • 根据索引字段搜索、排序速度非常快

  • 缺点:

    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:

    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:

    • 只能给词条创建索引,而不是字段

    • 无法根据字段做排序

3. IK分词器

Elasticsearch的关键就是倒排索引,而倒排索引依赖于对文档内容的分词,而分词则需要高效、精准的分词算法,IK分词器就是这样一个中文分词算法。

(1)安装IK分词器

在线安装

运行一个命令即可:

bash 复制代码
docker exec -it es ./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

然后重启es容器:

bash 复制代码
docker restart es

(2)使用IK分词器

IK分词器包含两种模式:

  • ik_smart:智能语义切分

  • ik_max_word:最细粒度切分

测试Elasticsearch官方提供的标准分词器:

bash 复制代码
POST /_analyze
{
  "analyzer": "standard",
  "text": "学习java太棒了"
}

语法说明:

  • POST:请求方式
  • /_analyze:请求路径,这里省略了http://192.168.150.101:9200,有kibana帮我们补充
  • analyzer:分词器类型,这里是默认的standard分词器
  • text:要分词的内容

再测试ik_smart分词器:

bash 复制代码
POST /_analyze
{
  "analyzer": "ik_smart",
  "text": "黑马程序员学习java太棒了"
}

再测试ik_max_word分词器:

更细粒度

(3)拓展词典

随着互联网的发展,"造词运动"也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:"泰裤辣","鸡你太美" 等。

想正确分词,IK分词器的词库也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

如果采用在线安装的通过,默认是没有config目录的,config目录下:

2)在IKAnalyzer.cfg.xml配置文件内容添加:

XML 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

3)在IK分词器的config目录新建一个 ext.dic:

4)重启elasticsearch

bash 复制代码
docker restart es

4. 基础概念

(1)文档和字段

elasticsearch是面向**文档(Document)**存储的。

文档数据会被序列化为json格式后存储在elasticsearch中。

原本数据库中的一行数据就是ES中的一个JSON文档;而数据库中每行数据都包含很多列,这些列就转换为JSON文档中的字段(Field)

(2)索引和映射

所有文档都散乱存放显然非常混乱,也不方便管理。要将类型相同的文档集中在一起管理,称为索引(Index)索引就是相同类型的文档的集合

映射(mapping):索引中文档的字段约束信息,类似表的结构约束。

(3)mysql与elasticsearch

MySQL Elasticsearch 说明
Table Index 索引(index),就是文档的集合,类似数据库的表(table)
Row Document 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
Column Field 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
Schema Mapping Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQL DSL DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

ES和Mysql两者各自有自己的擅长之处:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现

  • 对查询性能要求较高的搜索需求,使用elasticsearch实现

二、索引库操作

1. Mapping映射属性

Mapping是对索引库中文档的约束,常见的Mapping属性包括:

  • type:字段数据类型,常见的简单类型有:

    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)

    • 数值:longintegershortbytedoublefloat

    • 布尔:boolean

    • 日期:date

    • 对象:object

  • index:是否创建索引,默认为true

  • analyzer:使用哪种分词器

  • properties:该字段的子字段

例如下面的json文档:

bash 复制代码
{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

对应的每个字段映射(Mapping):

字段名 字段类型 类型说明 是否 参与搜索 是否 参与分词 分词器
age integer 整数 × ------
weight float 浮点数 × ------
isMarried boolean 布尔 × ------
info text 字符串,但需要分词 IK
email keyword 字符串,但是不分词 × × ------
score float 只看数组中元素类型 × ------
name firstName keyword 字符串,但是不分词 × ------
name lastName keyword 字符串,但是不分词 × ------

2. 索引库的CRUD

由于Elasticsearch采用的是Restful风格的API,因此其请求方式和路径相对都比较规范,而且请求参数也都采用JSON风格。我们直接基于Kibana的DevTools来编写请求做测试,由于有语法提示,会非常方便。

(1)创建索引库和映射PUT

基本语法

  • 请求方式:PUT

  • 请求路径:/索引库名,可以自定义

  • 请求参数:mapping映射

bash 复制代码
PUT /索引库名称  #如/heima
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}

(2)查询索引库GET

基本语法

  • 请求方式:GET

  • 请求路径:/索引库名

  • 请求参数:无

bash 复制代码
GET /索引库名 
#示例:GET /hmall

(3)修改索引库PUT

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。因此修改索引库能做的就是向索引库中添加新字段,或者更新索引库的基础属性。

示例:

bash 复制代码
PUT /heima/_mapping
{
  "properties": {
    "age":{
      "type": "integer"
    }
  }
}

(4)删除索引库DELETE

语法:

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

bash 复制代码
DELETE /索引库名
#示例:DELETE /heima

(5)总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名

  • 查询索引库:GET /索引库名

  • 删除索引库:DELETE /索引库名

  • 修改索引库,添加字段:PUT /索引库名/_mapping

可以看到,对索引库的操作基本遵循的Restful的风格,因此API接口非常统一,方便记忆。

三、文档操作

1. 新增文档POST

语法:

bash 复制代码
POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
}

示例:

bash 复制代码
POST /heima/_doc/1
{
    "info": "黑马程序员Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

2. 查询文档GET

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

bash 复制代码
GET /{索引库名称}/_doc/{id}

示例:

bash 复制代码
GET /heima/_doc/1

查看结果:

3. 删除文档DELETE

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

bash 复制代码
DELETE /{索引库名}/_doc/id值

示例:

bash 复制代码
DELETE /heima/_doc/1

结果:

4. 修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档

  • 局部修改:修改文档中的部分字段

(1)全量修改PUT

全量修改是覆盖原来的文档,其本质是两步操作:

  • 根据指定的id删除文档

  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。先删除后增加

语法:

bash 复制代码
PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

示例:

bash 复制代码
PUT /heima/_doc/1
{
    "info": "黑马程序员高级Java讲师",
    "email": "zy@itcast.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

由于id1的文档已经被删除,所以第一次执行时,得到的反馈是created

所以如果执行第2次时,得到的反馈则是updated

(2)局部修改POST

局部修改是只修改指定id匹配的文档中的部分字段。

语法:

bash 复制代码
POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

bash 复制代码
POST /heima/_update/1
{
  "doc": {
    "email": "ZhaoYun@itcast.cn"
  }
}

执行结果

5. 批处理

批处理采用POST请求,基本语法如下:

bash 复制代码
POST _bulk
{ "index" : { "_index" : "test", "_id" : "1" } }
{ "field1" : "value1" }
{ "delete" : { "_index" : "test", "_id" : "2" } }
{ "create" : { "_index" : "test", "_id" : "3" } }
{ "field1" : "value3" }
{ "update" : {"_id" : "1", "_index" : "test"} }
{ "doc" : {"field2" : "value2"} }
  • index代表新增操作

    • _index:指定索引库名

    • _id指定要操作的文档id

    • { "field1" : "value1" }:则是要新增的文档内容

  • delete代表删除操作

    • _index:指定索引库名

    • _id指定要操作的文档id

  • update代表更新操作

    • _index:指定索引库名

    • _id指定要操作的文档id

    • { "doc" : {"field2" : "value2"} }:要更新的文档字段

示例,批量新增:

bash 复制代码
POST /_bulk
{"index": {"_index":"heima", "_id": "3"}}
{"info": "黑马程序员C++讲师", "email": "ww@itcast.cn", "name":{"firstName": "五", "lastName":"王"}}
{"index": {"_index":"heima", "_id": "4"}}
{"info": "黑马程序员前端讲师", "email": "zhangsan@itcast.cn", "name":{"firstName": "三", "lastName":"张"}}

批量删除:

bash 复制代码
POST /_bulk
{"delete":{"_index":"heima", "_id": "3"}}
{"delete":{"_index":"heima", "_id": "4"}}

6. 总结

四、RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。

1. 初始化RestClient

(1)引入依赖

在黑马上次的item-service模块(商品搜索模块)中引入esRestHighLevelClient依赖:

XML 复制代码
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

因为SpringBoot默认的ES版本是7.17.10,所以我们需要覆盖默认的ES版本:

XML 复制代码
  <properties>
      <maven.compiler.source>11</maven.compiler.source>
      <maven.compiler.target>11</maven.compiler.target>
      <elasticsearch.version>7.12.1</elasticsearch.version>
  </properties>

(2)初始化RestHighLevelClient

java 复制代码
RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.88.128:9200")
));

(3)单元测试示例

这里为了单元测试方便,我们创建一个测试类IndexTest,然后将初始化的代码编写在@BeforeEach方法中:

java 复制代码
public class IndexTest {

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.88.128:9200")
        ));
    }

    @Test
    void testConnect() {
        System.out.println(client);
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

2. 索引库操作

(1)创建索引库

Mapping映射
  • 搜索过滤字段

    • 分类

    • 品牌

    • 价格

  • 排序字段

    • 默认:按照更新时间降序排序

    • 销量

    • 价格

  • 展示字段

    • 商品id:用于点击后跳转

    • 图片地址

    • 是否是广告推广商品

    • 名称

    • 价格

    • 评价数量

    • 销量

因此,最终我们的索引库文档结构应该是这样:

index默认是true,表示要参与搜索;id虽然是bigint类型,但是通常用keyword类型

bash 复制代码
PUT /items
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word"
      },
      "price":{
        "type": "integer"
      },
      "stock":{
        "type": "integer"
      },
      "image":{
        "type": "keyword",
        "index": false
      },
      "category":{
        "type": "keyword"
      },
      "brand":{
        "type": "keyword"
      },
      "sold":{
        "type": "integer"
      },
      "commentCount":{
        "type": "integer",
        "index": false
      },
      "isAD":{
        "type": "boolean"
      },
      "updateTime":{
        "type": "date"
      }
    }
  }
}
创建索引

具体代码如下:

java 复制代码
@Test
void testCreateIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("items");
    // 2.准备请求参数
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"stock\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"image\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"category\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"sold\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"commentCount\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"isAD\":{\n" +
            "        \"type\": \"boolean\"\n" +
            "      },\n" +
            "      \"updateTime\":{\n" +
            "        \"type\": \"date\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";

(2)删除索引库

在Request对象上。流程如下:

  • 1)创建Request对象。这次是DeleteIndexRequest对象

  • 2)准备参数。这里是无参,因此省略

  • 3)发送请求。改用delete方法

java 复制代码
@Test
void testDeleteIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("items");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

(3)查询索引库

  • 1)创建Request对象。这次是GetIndexRequest对象

  • 2)准备参数。这里是无参,直接省略

  • 3)发送请求。改用get方法

java 复制代码
@Test
void testExistsIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("items");
    // 2.发送请求
    client.indices().get(request, RequestOptions.DEFAULT);
}

3. 文档操作

(1)新增文档

语法:

思路:可以将实体类转换为json

准备实体类:

定义一个新的DTO:

java 复制代码
@Data
@ApiModel(description = "索引库实体")
public class ItemDoc{

    @ApiModelProperty("商品id")
    private String id;

    @ApiModelProperty("商品名称")
    private String name;

    @ApiModelProperty("价格(分)")
    private Integer price;

    @ApiModelProperty("商品图片")
    private String image;

    @ApiModelProperty("类目名称")
    private String category;

    @ApiModelProperty("品牌名称")
    private String brand;

    @ApiModelProperty("销量")
    private Integer sold;

    @ApiModelProperty("评论数")
    private Integer commentCount;

    @ApiModelProperty("是否是推广广告,true/false")
    private Boolean isAD;

    @ApiModelProperty("更新时间")
    private LocalDateTime updateTime;
}

测试:

java 复制代码
@Test
void testAddDocument() throws IOException {
    // 1.根据id查询商品数据
    Item item = itemService.getById(100002644680L);
    // 2.转换为文档类型
    ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
    // 3.将ItemDTO转json
    String doc = JSONUtil.toJsonStr(itemDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("items").id(itemDoc.getId());
    // 2.准备Json文档
    request.source(doc, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

(2)查询文档

java 复制代码
@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request对象
    GetRequest request = new GetRequest("items").id("100002644680");
    // 2.发送请求
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.获取响应结果中的source
    String json = response.getSourceAsString();
    
    ItemDoc itemDoc = JSONUtil.toBean(json, ItemDoc.class);
    System.out.println("itemDoc= " + ItemDoc);
}

(3)删除文档

java 复制代码
@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request,两个参数,第一个是索引库名,第二个是文档id
    DeleteRequest request = new DeleteRequest("item", "100002644680");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

(4)修改文档

全量修改

再次写入id一样的文档,就会删除旧文档,添加新文档。与新增的JavaAPl一致

局部修改

仅仅修改items的两个属性值

java 复制代码
@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("items", "100002644680");
    // 2.准备请求参数
    request.doc(
            "price", 58800,
            "commentCount", 1
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

(5)批处理

批处理与前面讲的文档的CRUD步骤基本一致:

  • 创建Request,但这次用的是BulkRequest

  • 准备请求参数

  • 发送请求,这次要用到client.bulk()方法

批量新增功能示例:

java 复制代码
@Test
void testBulk() throws IOException {
    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备请求参数
    request.add(new IndexRequest("items").id("1").source("json doc1", XContentType.JSON));
    request.add(new IndexRequest("items").id("2").source("json doc2", XContentType.JSON));
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}

当我们要导入商品数据时,由于商品数量达到数十万,因此不可能一次性全部导入。建议采用循环遍历方式,每次导入1000条左右的数据。

java 复制代码
@Test
void testLoadItemDocs() throws IOException {
    // 分页查询商品数据
    int pageNo = 1;
    int size = 1000;
    while (true) {
        Page<Item> page = itemService.lambdaQuery().eq(Item::getStatus, 1).page(new Page<Item>(pageNo, size)); //查询第pageNo页
        // 非空校验
        List<Item> items = page.getRecords();
        if (CollUtils.isEmpty(items)) {
            return; //退出循环条件
        }
        log.info("加载第{}页数据,共{}条", pageNo, items.size());
        // 1.创建Request
        BulkRequest request = new BulkRequest("items");
        // 2.准备参数,添加多个新增的Request
        for (Item item : items) {
            // 2.1.转换为文档类型ItemDTO
            ItemDoc itemDoc = BeanUtil.copyProperties(item, ItemDoc.class);
            // 2.2.创建新增文档的Request对象
            request.add(new IndexRequest()
                            .id(itemDoc.getId())
                            .source(JSONUtil.toJsonStr(itemDoc), XContentType.JSON));
        }
        // 3.发送请求
        client.bulk(request, RequestOptions.DEFAULT);

        // 翻页
        pageNo++;
    }
}

五、DSL查询

1. 快速入门

查询的语法结构:

java 复制代码
GET /{索引库名}/_search
{
  "query": {
    "查询类型": {
      // .. 查询条件
    }
  }
}

以最简单的无条件查询为例,无条件查询的类型是:match_all,因此其查询语句如下:

java 复制代码
GET /items/_search
{
  "query": {
    "match_all": {
      
    }
  }
}

执行结果如下:

虽然是match_all,但是响应结果中并不会包含索引库中的所有文档,而是仅有10条。这是因为处于安全考虑,elasticsearch设置了默认的查询页数。

2. 叶子查询

叶子查询的类型也可以做进一步细分,常见的有:

(1)全文检索查询

以全文检索中的match为例,语法如下:

bash 复制代码
GET /{索引库名}/_search
{
  "query": {
    "match": {
      "字段名": "搜索条件"
    }
  }
}

示例:

multi_match,区别在于可以同时对多个字段搜索,而且多个字段都要满足,语法示例:

bash 复制代码
GET /{索引库名}/_search
{
  "query": {
    "multi_match": {
      "query": "搜索条件",
      "fields": ["字段1", "字段2"]
    }
  }
}

(2)精确查询

精确查询,英文是Term-level query,顾名思义,词条级别的查询。也就是说不会对用户输入的搜索条件再分词,而是作为一个词条,与搜索的字段内容精确值匹配。因此推荐查找keyword、数值、日期、boolean类型的字段。

term查询为例,其语法如下:

bash 复制代码
GET /{索引库名}/_search
{
  "query": {
    "term": {
      "字段名": {
        "value": "搜索条件"
      }
    }
  }
}

示例:

当你输入的搜索条件不是词条,而是短语时,由于不做分词,你反而搜索不到:

再来看下range查询,语法如下:

bash 复制代码
GET /{索引库名}/_search
{
  "query": {
    "range": {
      "字段名": {
        "gte": {最小值},
        "lte": {最大值}
      }
    }
  }
}

range是范围查询,对于范围筛选的关键字有:

  • gte:大于等于

  • gt:大于

  • lte:小于等于

  • lt:小于

示例:

再看下ids查询:

3. 复合查询

复合查询大致可以分为两类:

  • 第一类:基于逻辑运算组合叶子查询,实现组合条件,例如

    • bool
  • 第二类:基于某种算法修改查询时的文档相关性算分,从而改变文档排名。例如:

    • function_score

    • dis_max

bool查询

bool查询,即布尔查询。就是利用逻辑运算来组合一个或多个查询子句的组合。bool查询支持的逻辑运算有:

  • must:必须匹配每个子查询,类似"与"

  • should:选择性匹配子查询,类似"或"

  • must_not:必须不匹配,不参与算分,类似"非"

  • filter:必须匹配,不参与算分

bool查询的语法如下:

bash 复制代码
GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "should": [
        {"term": {"brand": { "value": "vivo" }}},
        {"term": {"brand": { "value": "小米" }}}
      ],
      "must_not": [
        {"range": {"price": {"gte": 2500}}}
      ],
      "filter": [
        {"range": {"price": {"lte": 1000}}}
      ]
    }
  }
}

我们要搜索手机,但品牌必须是华为,价格必须是900~1599,那么可以这样写:

bash 复制代码
GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "filter": [
        {"term": {"brand": { "value": "华为" }}},
        {"range": {"price": {"gte": 90000, "lt": 159900}}}
      ]
    }
  }
}

4. 排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。不过分词字段无法排序,能参与排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

我们按照商品价格排序:

bash 复制代码
GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": "desc"
    }
  ]
}

5. 分页

(1)简单分页

elasticsearch中通过修改fromsize参数来控制要返回的分页结果:

  • from:从第几个文档开始

  • size:总共查询几个文档

类似于mysql中的limit ?, ?

bash 复制代码
GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10,  // 每页文档数量,默认10
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

(2)深度分页

elasticsearch的数据一般会采用分片存储,也就是把一个索引中的数据分成N份,存储到不同节点上。

这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。

从实现思路来分析,肯定是将所有数据排序,找出前1000名,截取其中的990~1000的部分。我们只能在每一个分片上都找出排名前1000的数据,然后汇总到一起,重新排序,才能找出整个索引库中真正的前1000名,此时截取990~1000的数据即可。

假如我们现在要查询的是第999页数据呢,是不是要找第9990~10000的数据,那岂不是需要把每个分片中的前10000名数据都查询出来,汇总在一起,在内存中排序?如果查询的分页深度更深呢,需要一次检索的数据岂不是更多?

由此可知,当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力。

因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,elasticsearch提供了两种解决方案:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。

  • scroll:原理将排序后的文档id形成快照,保存下来,基于快照做分页。官方已经不推荐使用。

6. 高亮

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

观察页面源码,你会发现两件事情:

  • 高亮词条都被加了<em>标签

  • <em>标签都添加了红色样式

基本语法如下:

bash 复制代码
GET /{索引库名}/_search
{
  "query": {
    "match": {
      "搜索字段": "搜索关键字"
    }
  },
  "highlight": {
    "fields": {
      "高亮字段名称": {
        "pre_tags": "<em>",
        "post_tags": "</em>"
      }
    }
  }
}

六、RestClient查询

1. 快速入门

(1)发送请求

(2)解析响应结果

(3)完整代码

java 复制代码
@Test
void testMatchAll() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    SearchHits searchHits = response.getHits();
    // 1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 2.遍历结果数组
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        // 3.得到_source,也就是原始json文档
        String source = hit.getSourceAsString();
        // 4.反序列化并打印
        ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
        System.out.println(item);
    }
}

2. 叶子查询

match查询:

java 复制代码
@Test
void testMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

multi_match查询:

java 复制代码
@Test
void testMultiMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.multiMatchQuery("脱脂牛奶", "name", "category"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

range查询:

java 复制代码
@Test
void testRange() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.rangeQuery("price").gte(10000).lte(30000));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

term查询:

java 复制代码
@Test
void testTerm() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.termQuery("brand", "华为"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

3. 复合查询

java 复制代码
@Test
void testBool() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.准备bool查询
    BoolQueryBuilder bool = QueryBuilders.boolQuery();
    // 2.2.关键字搜索
    bool.must(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.3.品牌过滤
    bool.filter(QueryBuilders.termQuery("brand", "德亚"));
    // 2.4.价格过滤
    bool.filter(QueryBuilders.rangeQuery("price").lte(30000));
    request.source().query(bool);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

4. 排序和分页

java 复制代码
@Test
void testPageAndSort() throws IOException {
    int pageNo = 1, pageSize = 5;

    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.搜索条件参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.排序参数
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页参数
    request.source().from((pageNo - 1) * pageSize).size(pageSize);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

5. 高亮

java 复制代码
@Test
void testHighlight() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.query条件
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.高亮条件
    request.source().highlighter(
            SearchSourceBuilder.highlight()
                    .field("name")
                    .preTags("<em>")
                    .postTags("</em>")
    );
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    SearchHits searchHits = response.getHits();
    // 1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 2.遍历结果数组
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        // 3.得到_source,也就是原始json文档
        String source = hit.getSourceAsString();
        // 4.反序列化
        ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
        // 5.获取高亮结果
        Map<String, HighlightField> hfs = hit.getHighlightFields();
        if (CollUtils.isNotEmpty(hfs)) {
            // 5.1.有高亮结果,获取name的高亮结果
            HighlightField hf = hfs.get("name");
            if (hf != null) {
                // 5.2.获取第一个高亮结果片段,就是商品名称的高亮值
                String hfName = hf.getFragments()[0].string();
                item.setName(hfName);
            }
        }
        System.out.println(item);
    }
}

结果:

七、聚合

聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。

聚合常见的有三类:

  • 桶( Bucket **)**聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组

    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组

  • 度量( Metric **)**聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值

    • Max:求最大值

    • Min:求最小值

    • Stats:同时求maxminavgsum

  • 管道( pipeline **)**聚合:其它聚合的结果为基础做进一步运算

1. DSL语法

(1)Bucket聚合

也就是group by category

bash 复制代码
GET /items/_search
{
  "size": 0, 
  "aggs": {
    "category_agg": {
      "terms": {
        "field": "category",
        "size": 20
      }
    }
  }
}

来看下查询的结果:

(2)带条件聚合

我想知道价格高于3000元的手机品牌有哪些,该怎么统计呢?

bash 复制代码
GET /items/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category": "手机"
          }
        },
        {
          "range": {
            "price": {
              "gte": 300000
            }
          }
        }
      ]
    }
  }, 
  "size": 0, 
  "aggs": {
    "brand_agg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

(3)Metric聚合

现在我们需要对桶内的商品做运算,获取每个品牌价格的最小值、最大值、平均值。

这就要用到Metric聚合了,例如stat聚合,就可以同时获取minmaxavg等结果。

bash 复制代码
GET /items/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "category": "手机"
          }
        },
        {
          "range": {
            "price": {
              "gte": 300000
            }
          }
        }
      ]
    }
  }, 
  "size": 0, 
  "aggs": {
    "brand_agg": {
      "terms": {
        "field": "brand",
        "size": 20
      },
      "aggs": {
        "stats_meric": {
          "stats": {
            "field": "price"
          }
        }
      }
    }
  }
}

brand_agg聚合的内部,我们新加了一个aggs参数。这个聚合就是brand_agg的子聚合,会对brand_agg形成的每个桶中的文档分别统计。

2. RestClient实现聚合

java 复制代码
@Test
void testAgg() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.准备请求参数
    BoolQueryBuilder bool = QueryBuilders.boolQuery()
            .filter(QueryBuilders.termQuery("category", "手机"))
            .filter(QueryBuilders.rangeQuery("price").gte(300000));
    request.source().query(bool).size(0);
    // 3.聚合参数
    request.source().aggregation(
            AggregationBuilders.terms("brand_agg").field("brand").size(5)
    );
    // 4.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 5.解析聚合结果
    Aggregations aggregations = response.getAggregations();
    // 5.1.获取品牌聚合
    Terms brandTerms = aggregations.get("brand_agg");
    // 5.2.获取聚合中的桶
    List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
    // 5.3.遍历桶内数据
    for (Terms.Bucket bucket : buckets) {
        // 5.4.获取桶内key
        String brand = bucket.getKeyAsString();
        System.out.print("brand = " + brand);
        long count = bucket.getDocCount();
        System.out.println("; count = " + count);
    }
}
相关推荐
Elastic 中国社区官方博客2 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
掘金-我是哪吒2 小时前
微服务mysql,redis,elasticsearch, kibana,cassandra,mongodb, kafka
redis·mysql·mongodb·elasticsearch·微服务
研究是为了理解3 小时前
Git Bash 常用命令
git·elasticsearch·bash
晨欣7 小时前
Elasticsearch和Lucene之间是什么关系?(ChatGPT回答)
elasticsearch·chatgpt·lucene
筱源源13 小时前
Elasticsearch-linux环境部署
linux·elasticsearch
Elastic 中国社区官方博客1 天前
释放专利力量:Patently 如何利用向量搜索和 NLP 简化协作
大数据·数据库·人工智能·elasticsearch·搜索引擎·自然语言处理
Shenqi Lotus1 天前
ELK-ELK基本概念_ElasticSearch的配置
elk·elasticsearch
yeye198912241 天前
10-Query & Filtering 与多字符串多字段查询
elasticsearch
Narutolxy1 天前
精准优化Elasticsearch:磁盘空间管理与性能提升技巧20241106
大数据·elasticsearch·jenkins
谢小涛2 天前
ES管理工具Cerebro 0.8.5 Windows版本安装及启动
elasticsearch·es·cerebro