Dataloader

1.去PyTorch官网上查找Dataloader的文档

使用测试集的原因是测试集样本数更少,运行起来时间会短一些(指用DataLoader遍历的时间):

python 复制代码
import torchvision

# 准备的测试数据集
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)

# 测试数据中的第一张图片
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloader")
step = 0
for data in test_loader:
    imgs, targets = data
    # print(imgs.shape)
    # print(targets)
    writer.add_images("test_data", imgs, step)
    step = step + 1

writer.close()

drop_last参数

windows系统下如果出现BrokenPipeError的错误,可以考虑将 num_workers设置为0

2.采样器默认是随机采样

python 复制代码
import torchvision

# 准备的测试数据集
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)

# 测试数据中的第一张图片
img, target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("dataloader")

for epoch in range(2):
    step = 0
    for data in test_loader:
        imgs, targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch:{}".format(epoch), imgs, step)
        step = step + 1

writer.close()

用TensorBoard展示图片

①注意要用add_images而不是之前用过的add_image

②一定要等到程序运行结束了再在Terminal(终端)里使用tensorboard命令,不然会出现图片加载不全的情况!可以在程序末尾加一行语句来打印程序结束。

相关推荐
white-persist18 分钟前
Python实例方法与Python类的构造方法全解析
开发语言·前端·python·原型模式
Java 码农43 分钟前
Centos7 maven 安装
java·python·centos·maven
lyx33136967591 小时前
#深度学习基础:神经网络基础与PyTorch
pytorch·深度学习·神经网络·参数初始化
倔强青铜三1 小时前
苦练Python第63天:零基础玩转TOML配置读写,tomllib模块实战
人工智能·python·面试
递归不收敛2 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.3 推荐系统全面解析
pytorch·学习·机器学习
浔川python社2 小时前
《网络爬虫技术规范与应用指南系列》(xc—3):合规实操与场景落地
python
B站计算机毕业设计之家2 小时前
智慧交通项目:Python+YOLOv8 实时交通标志系统 深度学习实战(TT100K+PySide6 源码+文档)✅
人工智能·python·深度学习·yolo·计算机视觉·智慧交通·交通标志
IT森林里的程序猿2 小时前
基于机器学习方法的网球比赛胜负趋势预测
python·机器学习·django
正牌强哥2 小时前
Futures_ML——机器学习在期货量化交易中的应用与实践
人工智能·python·机器学习·ai·交易·akshare
倔强青铜三2 小时前
苦练Python第62天:零基础玩转CSV文件读写,csv模块实战
人工智能·python·面试