Datawhale AI夏令营第五期学习!

学习日志

日期: 2024年8月27日

今日学习内容:

今天,我学习了如何在深度学习任务中使用卷积神经网络(CNN)进行图像分类的基本流程,并成功地在JupyterLab中运行了一个完整的项目。以下是我今天的学习和操作步骤的总结:

1. 环境配置与数据集获取:

  • 我首先启动了一个JupyterLab实例,并使用git clone命令下载了所需的代码和数据集。这一步帮助我熟悉了如何在远程服务器上配置和管理学习环境。
  • 下载完成后,我进入了项目文件夹,并打开了主要的notebook文件HW3-ImageClassification.ipynb

2. 代码执行与结果获取:

  • 在运行代码时,我按照步骤依次执行了各个单元格。代码运行大约持续了12分钟,期间模型的训练过程和中间结果得以显示。最终,生成了submission.csv文件,该文件包含了对测试集图像的分类结果。
  • 训练过程中,我观察到模型的准确率逐渐提升,并通过不同的可视化图表进一步理解了模型的性能表现。

3. 代码详解与理解:

  • 我仔细学习了代码的每个部分,从数据的准备与预处理、模型的定义,到模型的训练和评估。特别是对于卷积神经网络的构建与优化部分,我加深了对其工作原理的理解,例如卷积层的作用、批归一化、激活函数ReLU以及池化层如何帮助提取图像特征。

4. 模型优化建议:

  • 在代码最后部分,我还学习了如何进一步优化模型性能的建议,如增加网络深度、使用更复杂的卷积核、引入残差连接、应用数据增强等。未来我计划继续尝试这些优化方法,以进一步提升模型的分类精度。

5. 个人反思与总结:

  • 今天的学习让我对深度学习中的图像分类任务有了更直观的认识。通过动手实践,我不仅加深了对卷积神经网络的理解,还学会了如何配置和运行实际的深度学习项目。
  • 尽管过程顺利,但在未来的学习中,我还需要加强对每个模块的细节理解,尤其是如何根据具体任务对网络结构进行调整和优化,以应对不同的数据集和分类需求。
  • 最终效果:

相关推荐
User_芊芊君子几秒前
CANN_MetaDef图定义框架全解析为AI模型构建灵活高效的计算图表示
人工智能·深度学习·神经网络
I'mChloe1 分钟前
CANN GE 深度技术剖析:图优化管线、Stream 调度与离线模型生成机制
人工智能
凯子坚持 c2 分钟前
CANN 生态全景:`cann-toolkit` —— 一站式开发套件如何提升 AI 工程效率
人工智能
lili-felicity4 分钟前
CANN流水线并行推理与资源调度优化
开发语言·人工智能
皮卡丘不断更5 分钟前
告别“金鱼记忆”:SwiftBoot v0.1.5 如何给 AI 装上“永久项目大脑”?
人工智能·系统架构·ai编程
1024小神7 分钟前
SVG标签中path路径参数学习
学习
lili-felicity7 分钟前
CANN模型量化详解:从FP32到INT8的精度与性能平衡
人工智能·python
北京耐用通信8 分钟前
破解AGV多协议互联难题:耐达讯自动化Profinet转Devicenet网关如何实现高效协同
人工智能·科技·物联网·网络协议·自动化·信息与通信
平安的平安9 分钟前
空间智能AI模型的推理加速优化实践
人工智能
baby_hua9 分钟前
20251217_大模型的分布式训练
人工智能