线性代数:如何由AB=E 推出 BA=AB?

最近在二刷线性代数,在看逆矩阵定义的时候发现了这个问题。于是决定写一写,给出一种证明方式。

一、由逆矩阵的定义出发

这是我在mooc-山东大学-线性代数(秦静老师)第一章第十讲的ppt上截取的定义。 看到这个定义我就在想:

如果A和B是n阶方阵,那么AB=E(E为n阶单位阵)这一条件能不能说明B是A的逆矩阵,A是可逆的呢?或者说,AB=E能不能推导出AB=BA呢

于是我去网上搜索,发现答案是肯定的。但好多证明貌似有些循环论证的味道,在证明AB=BA时用到了A是可逆矩阵的条件以及以A为可逆矩阵为基础的结论,问题是:现在AB=E不能充分说明A就是可逆矩阵!

二、伴随矩阵

在不能用A为可逆矩阵这一条件,我想到了一种严密的证明方法。

需要给出两个简单的前提条件:

如果A是n阶方针,是A的伴随矩阵,那么有:

可以看出,,伴随矩阵的性质非常好,无论是左乘A还是由乘A都能得到一个数量矩阵!

三、同阶方阵的有趣结论

这一结论是可以证明的,但过程比较复杂。涉及矩阵具体的展开,矩阵的构造,矩阵的初等变换。所以我不写了。

四、推理过程

如果n阶方阵A和n方矩阵B相等,则它们同时左乘一个同样的n阶方阵,得到的n阶方阵显然相等。

如果,由于AB和E均为n阶方阵,故它们同时左乘n阶方阵有:

由于任何n阶方阵右乘n阶单位阵等于它本身,且

所以有:

那么,两边同时倍乘,得到:

这边可能会遇到的疑问,但这是不可能的。由于A和B都是n阶方阵,有如下结论:

显而易见:

所以,如果矩阵A和B都是n阶方阵,仅仅AB=E这一条件就能说明矩阵A是可逆的!

相关推荐
和光同尘@4 小时前
74. 搜索二维矩阵(LeetCode 热题 100)
数据结构·c++·线性代数·算法·leetcode·职场和发展·矩阵
跨境卫士小树6 小时前
店铺矩阵崩塌前夜:跨境多账号运营的3个生死线
大数据·线性代数·矩阵
亲持红叶1 天前
最优化方法-牛顿法
人工智能·线性代数·机器学习·概率论
sda423423424232 天前
8.【线性代数】——求解Ax=b
线性代数·ax=b
余~~185381628002 天前
短视频矩阵碰一碰发视频源码技术开发,支持OEM
网络·人工智能·线性代数·矩阵·音视频
运筹说3 天前
运筹说 第132期 | 矩阵对策的基本理论
线性代数·矩阵·运筹学
sda423423424233 天前
6.【线性代数】—— 列空间和零空间
线性代数·列空间·零空间
sda423423424233 天前
7.【线性代数】——求解Ax=0,主列和自由列
线性代数·ax=0
sda423423424233 天前
5.【线性代数】—— 转置,置换和向量空间
线性代数
sda423423424234 天前
4.【线性代数】——矩阵的LU分解
线性代数·矩阵·矩阵分解·lu