线性代数:如何由AB=E 推出 BA=AB?

最近在二刷线性代数,在看逆矩阵定义的时候发现了这个问题。于是决定写一写,给出一种证明方式。

一、由逆矩阵的定义出发

这是我在mooc-山东大学-线性代数(秦静老师)第一章第十讲的ppt上截取的定义。 看到这个定义我就在想:

如果A和B是n阶方阵,那么AB=E(E为n阶单位阵)这一条件能不能说明B是A的逆矩阵,A是可逆的呢?或者说,AB=E能不能推导出AB=BA呢

于是我去网上搜索,发现答案是肯定的。但好多证明貌似有些循环论证的味道,在证明AB=BA时用到了A是可逆矩阵的条件以及以A为可逆矩阵为基础的结论,问题是:现在AB=E不能充分说明A就是可逆矩阵!

二、伴随矩阵

在不能用A为可逆矩阵这一条件,我想到了一种严密的证明方法。

需要给出两个简单的前提条件:

如果A是n阶方针,是A的伴随矩阵,那么有:

可以看出,,伴随矩阵的性质非常好,无论是左乘A还是由乘A都能得到一个数量矩阵!

三、同阶方阵的有趣结论

这一结论是可以证明的,但过程比较复杂。涉及矩阵具体的展开,矩阵的构造,矩阵的初等变换。所以我不写了。

四、推理过程

如果n阶方阵A和n方矩阵B相等,则它们同时左乘一个同样的n阶方阵,得到的n阶方阵显然相等。

如果,由于AB和E均为n阶方阵,故它们同时左乘n阶方阵有:

由于任何n阶方阵右乘n阶单位阵等于它本身,且

所以有:

那么,两边同时倍乘,得到:

这边可能会遇到的疑问,但这是不可能的。由于A和B都是n阶方阵,有如下结论:

显而易见:

所以,如果矩阵A和B都是n阶方阵,仅仅AB=E这一条件就能说明矩阵A是可逆的!

相关推荐
九州ip动态11 小时前
自媒体工作室如何矩阵?自媒体矩阵养号策略
线性代数·矩阵·媒体
田梓燊12 小时前
数学复习笔记 19
笔记·线性代数·机器学习
田梓燊1 天前
数学复习笔记 12
笔记·线性代数·机器学习
jerry6092 天前
LLM笔记(六)线性代数
笔记·学习·线性代数·自然语言处理
田梓燊2 天前
数学复习笔记 14
笔记·线性代数·矩阵
田梓燊2 天前
数学复习笔记 15
笔记·线性代数·机器学习
Magnum Lehar2 天前
3d游戏引擎的math矩阵实现
线性代数·矩阵·游戏引擎
HappyAcmen3 天前
线代第二章矩阵第九、十节:初等变换、矩阵的标准形、阶梯形与行最简阶梯形、初等矩阵
笔记·学习·线性代数·矩阵
人类发明了工具3 天前
【优化算法】协方差矩阵自适应进化策略(Covariance Matrix Adaptation Evolution Strategy,CMA-ES)
线性代数·算法·矩阵·cma-es
赵青临的辉3 天前
基础数学:线性代数与概率论在AI中的应用
人工智能·线性代数·概率论