线性代数:如何由AB=E 推出 BA=AB?

最近在二刷线性代数,在看逆矩阵定义的时候发现了这个问题。于是决定写一写,给出一种证明方式。

一、由逆矩阵的定义出发

这是我在mooc-山东大学-线性代数(秦静老师)第一章第十讲的ppt上截取的定义。 看到这个定义我就在想:

如果A和B是n阶方阵,那么AB=E(E为n阶单位阵)这一条件能不能说明B是A的逆矩阵,A是可逆的呢?或者说,AB=E能不能推导出AB=BA呢

于是我去网上搜索,发现答案是肯定的。但好多证明貌似有些循环论证的味道,在证明AB=BA时用到了A是可逆矩阵的条件以及以A为可逆矩阵为基础的结论,问题是:现在AB=E不能充分说明A就是可逆矩阵!

二、伴随矩阵

在不能用A为可逆矩阵这一条件,我想到了一种严密的证明方法。

需要给出两个简单的前提条件:

如果A是n阶方针,是A的伴随矩阵,那么有:

可以看出,,伴随矩阵的性质非常好,无论是左乘A还是由乘A都能得到一个数量矩阵!

三、同阶方阵的有趣结论

这一结论是可以证明的,但过程比较复杂。涉及矩阵具体的展开,矩阵的构造,矩阵的初等变换。所以我不写了。

四、推理过程

如果n阶方阵A和n方矩阵B相等,则它们同时左乘一个同样的n阶方阵,得到的n阶方阵显然相等。

如果,由于AB和E均为n阶方阵,故它们同时左乘n阶方阵有:

由于任何n阶方阵右乘n阶单位阵等于它本身,且

所以有:

那么,两边同时倍乘,得到:

这边可能会遇到的疑问,但这是不可能的。由于A和B都是n阶方阵,有如下结论:

显而易见:

所以,如果矩阵A和B都是n阶方阵,仅仅AB=E这一条件就能说明矩阵A是可逆的!

相关推荐
Ven%10 天前
矩阵阶数(线性代数) vs. 张量维度(深度学习):线性代数与深度学习的基石辨析,再也不会被矩阵阶数给混淆了
人工智能·pytorch·深度学习·线性代数·矩阵·tensor·张量
云云32111 天前
Subway Surfers Blast × 亚矩阵云手机:手游矩阵运营的终极变现方案
大数据·人工智能·线性代数·智能手机·矩阵·架构
点云侠12 天前
PCL 点云旋转的轴角表示法
人工智能·线性代数·算法·计算机视觉·矩阵
云云32112 天前
Snapchat矩阵运营新策略:亚矩阵云手机打造高效社交网络
线性代数·智能手机·矩阵
音程12 天前
(详细介绍)线性代数中的零空间(Null Space)
线性代数
爱学习的capoo13 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
只有左边一个小酒窝13 天前
(十七)深度学习之线性代数:核心概念与应用解析
人工智能·深度学习·线性代数
phoenix@Capricornus13 天前
主成分分析(PCA)例题——给定协方差矩阵
线性代数·矩阵
英雄哪里出来14 天前
《状压DP(01矩阵约束问题)》基础概念
数据结构·线性代数·算法·矩阵·动态规划·英雄算法联盟