MATLAB进阶:应用微积分

今天我们继续学习matlab中的应用微积分

求导(微分)

1、数值微分

n维向量x=(xi,x,... x)的差分定义为n-1维向量△x=(X2-X1,X3-X2,...,Xn- Xn-1)。

diff(x)

如果x是向量,返回向量x的差分如果x是矩阵,则按各列作差分。

diff(x,k)

k阶差分,即差分k次。

原理:

函数f(x)在点x= xo的导数为:

代码为:

复制代码
clear;
定义x,y
x=[1 1.1 1.2 1.3]; y=x.^3;
标准答案
3*x.^2
ans =
3.0000 3.6300 4.3200 5.0700
差分做法
dy=diff(y)/diff(x)

dy =
3.3100 3.9700 4.6900

我们看出差分法做导数求近似解的误差较大,是因为原式中△x是无限趋近于0的。

而此差分法的精度仅为0.1,故误差较大,在一般求导过程中,我们不会使用此方法,而是使用matlab中其他内置函数。

2、数值梯度微分

Fx=gradient(F,x)

返回向量F表示的一元函数沿x方向的导函数F'(x).其中x是与F同维数的向量.

[Fx,Fy]=gradient(F,x,y)

返回矩阵F表示的二元函数的数值梯度(F' x,F'y),当F为m*n矩阵时,x,y分别为n维和m维的向量。

代码为:

Matlab 复制代码
clear;
定义x,y
x=[1 1.1 1.2 1.3]; y=x.^3;
标准答案
3*x.^2
ans =
3.0000 3.6300 4.3200 5.0700

数值梯度做法
dy = gradient(y, x); % 使用 x 作为间距

dy =
3.3100  3.6400  4.3300  4.6900

可以看到,gradient(F,x)函数两端与标准答案比起来是有一定误差的,但是在函数体中间误差并没有很大。所以我们可以用这个函数来近似的求原函数的导数。

求积分

1、梯形积分法

z=trapz(x,y)

返回积分的近似值,其中x表示积分区间的离散化向量; y是与x同维数的向量,表示被积函数 。

原理如图:

即:取函数上若干点作为基准点,将图像切割成若干梯形后面积求解。

但是此种解法只能用来求近似解,求得的解误差较大。

如:

Matlab 复制代码
clear; 
x=-1:0.1:1;
y=exp(-x.^2);
trapz(x,y)

2、高精度积分法

z=integral (Fun,a,b)

  • fun 是被积函数,可以是函数句柄、匿名函数或内联函数。
  • ab 是积分的下限和上限。
  • z 是积分的结果。

此函数简单易用,不再过多解释。

今天就到这里明天我们继续学习

相关推荐
打工的小王1 分钟前
java并发编程(三)CAS
java·开发语言
油丶酸萝卜别吃8 分钟前
Mapbox GL JS 表达式 (expression) 条件样式设置 完全指南
开发语言·javascript·ecmascript
爱吃大芒果30 分钟前
Flutter for OpenHarmony前置知识:Dart 语法核心知识点总结(下)
开发语言·flutter·dart
Ulyanov38 分钟前
从桌面到云端:构建Web三维战场指挥系统
开发语言·前端·python·tkinter·pyvista·gui开发
星火开发设计1 小时前
C++ 函数定义与调用:程序模块化的第一步
java·开发语言·c++·学习·函数·知识
cypking1 小时前
二、前端Java后端对比指南
java·开发语言·前端
钟离墨笺1 小时前
Go语言--2go基础-->map
开发语言·后端·golang
lsx2024061 小时前
DOM CDATA
开发语言
Tony Bai1 小时前
Go 语言的“魔法”时刻:如何用 -toolexec 实现零侵入式自动插桩?
开发语言·后端·golang
Coding茶水间2 小时前
基于深度学习的交通标志检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习