DPR:一种用于开放与问答任务的检索方法

DPR

DPR,即Dense Passage Retriever,是一种用于开放域问答(Open-Domain Question Answering, ODQA)任务的检索方法。它的核心思想是利用深度学习模型来生成问题的高维密集向量表示,并在大量的文档集合(如维基百科)中检索与问题最相关的文档段落。DPR的架构基于以下两个主要组件:

  • 查询编码器(Query Encoder):这是一个基于BERT-base模型的编码器,用于将输入的问题转换成一个高维的查询向量。

  • 文档编码器(Document Encoder):同样基于BERT-base,该编码器将文档中的每个段落转换成一个高维的文档向量。

DPR使用一种称为最大内积搜索(Maximum Inner Product Search, MIPS)的方法来找到与查询向量最相关的文档向量。这种方法可以高效地在大规模数据集中检索最相似的项,通常用于高维空间中的相似性搜索。

DPR的优势在于它能够快速地从大量文本数据中检索出与问题相关的信息,为后续的答案生成或提取提供上下文支持。在RAG模型中,DPR作为检索组件,与生成模型(如BART)结合,使得模型在生成答案时能够利用到外部知识源中的信息,从而提高答案的准确性和相关性。

相关推荐
天天扭码2 分钟前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试
难受啊马飞2.012 分钟前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队13 分钟前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享16 分钟前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
烟锁池塘柳036 分钟前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
一尘之中1 小时前
全素山药开发指南:从防痒处理到高可用食谱架构
人工智能
加油吧zkf1 小时前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf1 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
峙峙峙2 小时前
线性代数--AI数学基础复习
人工智能·线性代数
weiwuxian2 小时前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能