DPR:一种用于开放与问答任务的检索方法

DPR

DPR,即Dense Passage Retriever,是一种用于开放域问答(Open-Domain Question Answering, ODQA)任务的检索方法。它的核心思想是利用深度学习模型来生成问题的高维密集向量表示,并在大量的文档集合(如维基百科)中检索与问题最相关的文档段落。DPR的架构基于以下两个主要组件:

  • 查询编码器(Query Encoder):这是一个基于BERT-base模型的编码器,用于将输入的问题转换成一个高维的查询向量。

  • 文档编码器(Document Encoder):同样基于BERT-base,该编码器将文档中的每个段落转换成一个高维的文档向量。

DPR使用一种称为最大内积搜索(Maximum Inner Product Search, MIPS)的方法来找到与查询向量最相关的文档向量。这种方法可以高效地在大规模数据集中检索最相似的项,通常用于高维空间中的相似性搜索。

DPR的优势在于它能够快速地从大量文本数据中检索出与问题相关的信息,为后续的答案生成或提取提供上下文支持。在RAG模型中,DPR作为检索组件,与生成模型(如BART)结合,使得模型在生成答案时能够利用到外部知识源中的信息,从而提高答案的准确性和相关性。

相关推荐
数科云4 小时前
AI提示词(Prompt)入门:什么是Prompt?为什么要写好Prompt?
人工智能·aigc·ai写作·ai工具集·最新ai资讯
Devlive 开源社区4 小时前
技术日报|Claude Code超级能力库superpowers登顶日增1538星,自主AI循环ralph爆火登榜第二
人工智能
软件供应链安全指南4 小时前
灵脉 IAST 5.4 升级:双轮驱动 AI 漏洞治理与业务逻辑漏洞精准检测
人工智能·安全
lanmengyiyu4 小时前
单塔和双塔的区别和共同点
人工智能·双塔模型·网络结构·单塔模型
微光闪现4 小时前
AI识别宠物焦虑、紧张和晕车行为,是否已经具备实际可行性?
大数据·人工智能·宠物
技术小黑屋_5 小时前
用好Few-shot Prompting,AI 准确率提升100%
人工智能
中草药z5 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派5 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
DisonTangor5 小时前
GLM-Image:面向密集知识与高保真图像生成的自回归模型
人工智能·ai作画·数据挖掘·回归·aigc
努力学习的小洋6 小时前
Python训练打卡Day5离散特征的处理-独热编码
人工智能·python·机器学习