RAG中pdf解析的方法全览

RAG中解析PDF的方法

一 pdf格式都有哪些

1.机器生成的pdf文件,包含图像,文本,可以被编辑

2.传统扫描文档,表现为图像,不能被编辑

3.带OCR的扫描文档。可能转OCR的过程中带入了错误。

二 pdf解析全科指南
复制代码
全面指南---------用python提取PDF中各类文本内容的方法 https://www.luxiangdong.com/2023/10/05/extract/
复制代码
https://mp.weixin.qq.com/s/SjdoTv1htO6Ti98g3qgBjQ

1.pdfplumber

复制代码
https://blog.csdn.net/fuhanghang/article/details/122579548
pdfplumber的主要类和方法
pdfplumber对于表格的提取
复制代码
参考https://github.com/jsvine/pdfplumber/blob/stable/examples/notebooks/extract-table-ca-warn-report.ipynb

代码:
pdf = pdfplumber.open("../pdfs/ca-warn-report.pdf")
p0=pdf.pages[0]
im = p0.to_image()  #display 第一页
table = p0.extract_table() 抽取其中最大的表格

import pandas as pd
df = pd.DataFrame(table[1:], columns=table[0])
for column in ["Effective", "Received"]:
    df[column] = df[column].str.replace(" ", "")  使用panda来吧table抽取到的数据转成dataFrame格式

2.layout parser

layoutparser 是一个基于深度学习的文档图像分析工具包,它提供了布局检测、OCR识别、布局分析等接口,适用于处理和分析扫描文档或图像中的文字。

复制代码
https://zhuanlan.zhihu.com/p/391138225

首先,将pdf的每一页转为图像,以便对其执行OCR来提取文本块。

复制代码
pip install pdf2image
images = convert_from_bytes(open('FILE PATH', 'rb').read())  #将pdf的每一页转为图像并保存在内存中
image = np.array(image) #将图像转为像素值数据

解析pdf论文的话,使用特定模型

复制代码
参考 https://zhuanlan.zhihu.com/p/602615194

LayoutParser为常见的OCR工具提供了统一的接口,示例代码如下:

text 复制代码
ocr_agent = lp.TesseractAgent()  layourparser要与Tesseract 这个包相结合

使用代码如下

复制代码
import layoutparser as lp
image = cv2. imread (" image_file ") # load images
model = lp. Detectron2LayoutModel ("lp :// PubLayNet / faster_rcnn_R_50_FPN_3x / config ")
layout = model . detect ( image )

3.paddlepaddle的工具

https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7/ppstructure

该代码从pdf中结构出各个标题层级的关系,又在word中重建该结构。

4.其他解析pdf获得子标题的方法

复制代码
1.先ocr,再版面解析
https://www.textin.com/experience/pdf-to-word
2.用fitz提取,再写正则规则匹配
3.参考论文 
https://arxiv.org/pdf/2308.14978.pdf
4.google的document ai
5.参考如下项目
https://github.com/OKC13/General-Documents-Layout-parser
6.使用如下接口 
https://apifox.com/apidoc/shared-a55f1a3d-4871-41b7-8f1a-3af83807410b/api-120356017
相关推荐
计算机小手5 小时前
一个带Web UI管理的轻量级高性能OpenAI模型代理网关,支持Docker快速部署
经验分享·docker·语言模型·开源软件
SmartBrain7 小时前
Qwen3-VL 模型架构及原理详解
人工智能·语言模型·架构·aigc
renhongxia17 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
可触的未来,发芽的智生8 小时前
发现:认知的普适节律 发现思维的8次迭代量子
javascript·python·神经网络·程序人生·自然语言处理
Funny_AI_LAB9 小时前
AI Agent最新重磅综述:迈向高效智能体,记忆、工具学习和规划综述
人工智能·学习·算法·语言模型·agi
m0_6038887110 小时前
Toward Cognitive Supersensing in Multimodal Large Language Model
人工智能·机器学习·ai·语言模型·论文速览
cxr82811 小时前
思维的相变:规模如何通过“结晶”重塑大语言模型的推理几何?
人工智能·语言模型·自然语言处理
觉醒大王11 小时前
科研新手如何读文献?从“乱读”到“会读”
论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
觉醒大王12 小时前
硕士/博士研究生避坑指南
笔记·深度学习·学习·自然语言处理·职场和发展·学习方法
肾透侧视攻城狮13 小时前
《PyTorch神经网络从开发到调试:实战技巧、可视化与兼容性问题解决方案》
神经网络·语言模型·二分类任务·实现前馈神经网络·可视化执行梯度下降算法·matplotlib版本兼容性·pytorch实现二分类任务