RAG中pdf解析的方法全览

RAG中解析PDF的方法

一 pdf格式都有哪些

1.机器生成的pdf文件,包含图像,文本,可以被编辑

2.传统扫描文档,表现为图像,不能被编辑

3.带OCR的扫描文档。可能转OCR的过程中带入了错误。

二 pdf解析全科指南
复制代码
全面指南---------用python提取PDF中各类文本内容的方法 https://www.luxiangdong.com/2023/10/05/extract/
复制代码
https://mp.weixin.qq.com/s/SjdoTv1htO6Ti98g3qgBjQ

1.pdfplumber

复制代码
https://blog.csdn.net/fuhanghang/article/details/122579548
pdfplumber的主要类和方法
pdfplumber对于表格的提取
复制代码
参考https://github.com/jsvine/pdfplumber/blob/stable/examples/notebooks/extract-table-ca-warn-report.ipynb

代码:
pdf = pdfplumber.open("../pdfs/ca-warn-report.pdf")
p0=pdf.pages[0]
im = p0.to_image()  #display 第一页
table = p0.extract_table() 抽取其中最大的表格

import pandas as pd
df = pd.DataFrame(table[1:], columns=table[0])
for column in ["Effective", "Received"]:
    df[column] = df[column].str.replace(" ", "")  使用panda来吧table抽取到的数据转成dataFrame格式

2.layout parser

layoutparser 是一个基于深度学习的文档图像分析工具包,它提供了布局检测、OCR识别、布局分析等接口,适用于处理和分析扫描文档或图像中的文字。

复制代码
https://zhuanlan.zhihu.com/p/391138225

首先,将pdf的每一页转为图像,以便对其执行OCR来提取文本块。

复制代码
pip install pdf2image
images = convert_from_bytes(open('FILE PATH', 'rb').read())  #将pdf的每一页转为图像并保存在内存中
image = np.array(image) #将图像转为像素值数据

解析pdf论文的话,使用特定模型

复制代码
参考 https://zhuanlan.zhihu.com/p/602615194

LayoutParser为常见的OCR工具提供了统一的接口,示例代码如下:

text 复制代码
ocr_agent = lp.TesseractAgent()  layourparser要与Tesseract 这个包相结合

使用代码如下

复制代码
import layoutparser as lp
image = cv2. imread (" image_file ") # load images
model = lp. Detectron2LayoutModel ("lp :// PubLayNet / faster_rcnn_R_50_FPN_3x / config ")
layout = model . detect ( image )

3.paddlepaddle的工具

https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.7/ppstructure

该代码从pdf中结构出各个标题层级的关系,又在word中重建该结构。

4.其他解析pdf获得子标题的方法

复制代码
1.先ocr,再版面解析
https://www.textin.com/experience/pdf-to-word
2.用fitz提取,再写正则规则匹配
3.参考论文 
https://arxiv.org/pdf/2308.14978.pdf
4.google的document ai
5.参考如下项目
https://github.com/OKC13/General-Documents-Layout-parser
6.使用如下接口 
https://apifox.com/apidoc/shared-a55f1a3d-4871-41b7-8f1a-3af83807410b/api-120356017
相关推荐
钛投标免费AI标书工具23 分钟前
银奖·钛投标荣获华为技术有限公司主办昇腾AI大赛华中区决赛银奖
人工智能·深度学习·自然语言处理·知识图谱
q_30238195561 小时前
华为Atlas310意图识别如何实现?
华为·自然语言处理·bert
阿杰学AI2 小时前
AI核心知识35——大语言模型之Generative AI(简洁且通俗易懂版)
人工智能·ai·语言模型·chatgpt·aigc·生成式ai·generative ai
阿杰学AI2 小时前
AI核心知识36——大语言模型之AGI(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·agi
知行力3 小时前
【GitHub每日速递 20251205】ByteDance开源verl:灵活高效的大语言模型RL训练库,解锁多项前沿技术!
语言模型·开源·github
小年糕是糕手4 小时前
【C++】类和对象(六) -- 友元、内部类、匿名对象、对象拷贝时的编译器优化
开发语言·c++·算法·pdf·github·排序算法
Kyln.Wu4 小时前
【python实用小脚本-315】跨界应用 | 烹饪爱好者如何用Python改造传统选菜流程?自然语言处理×美食推荐的化学反应,轻松实现AI菜谱生成
人工智能·python·自然语言处理
hjs_deeplearning5 小时前
应用篇#4:Qwen2视觉语言模型(VLM)的服务器部署
服务器·人工智能·python·深度学习·语言模型
小陈phd5 小时前
大模型从入门到精通(一)——大语言模型微调的前沿技术与应用
人工智能·语言模型·自然语言处理
盼小辉丶6 小时前
Transformer实战(29)——大语言模型(Large Language Model,LLM)
语言模型·transformer·大语言模型·llama