通义说【线性代数】为什么矩阵乘以向量是一个对矩阵中列向量的线性组合

矩阵乘以向量可以被理解为该向量在矩阵所代表的空间变换下的映射结果,也可以看作是矩阵列向量的线性组合。为了更好地理解这一点,让我们从矩阵乘法的基本定义出发。

假设有一个 m × n m \times n m×n的矩阵 A A A和一个 n n n维列向量 x \mathbf{x} x,矩阵 A A A可以写成由它的列向量组成的集合,即:

A = [ a 1 , a 2 , ... , a n ] A = [\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n] A=[a1,a2,...,an]

这里每个 a i \mathbf{a}_i ai都是一个 m m m维的列向量。当我们将矩阵 A A A与向量 x \mathbf{x} x相乘时:

A x = x 1 a 1 + x 2 a 2 + ... + x n a n A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n Ax=x1a1+x2a2+...+xnan

这里 x \mathbf{x} x的每个分量 x i x_i xi都是实数,它们分别与矩阵 A A A的每一列向量相乘,然后所有这样的乘积向量再相加起来。这个操作实际上就是对矩阵 A A A的列向量进行了加权求和,权重就是向量 x \mathbf{x} x的各个分量。因此,结果向量 A x A\mathbf{x} Ax是矩阵 A A A的列空间中的一个向量,并且可以视为矩阵 A A A的列向量按照 x \mathbf{x} x中给出的系数的线性组合。

举例说明

如果我们有一个 3 × 2 3 \times 2 3×2的矩阵 A A A和一个 2 2 2维的向量 x \mathbf{x} x:

A = [ a 11 a 12 a 21 a 22 a 31 a 32 ] , x = [ x 1 x 2 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} A= a11a21a31a12a22a32 ,x=[x1x2]

那么矩阵乘法 A x A\mathbf{x} Ax可以写作:

A x = [ a 11 a 12 a 21 a 22 a 31 a 32 ] [ x 1 x 2 ] = x 1 [ a 11 a 21 a 31 ] + x 2 [ a 12 a 22 a 32 ] = x 1 a 1 + x 2 a 2 A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} +x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 Ax= a11a21a31a12a22a32 [x1x2]=x1 a11a21a31 +x2 a12a22a32 =x1a1+x2a2

这里的 a 1 \mathbf{a}_1 a1和 a 2 \mathbf{a}_2 a2分别是矩阵 A A A的第一列和第二列。因此, A x A\mathbf{x} Ax实际上就是 x \mathbf{x} x中的系数 x 1 x_1 x1和 x 2 x_2 x2对 a 1 \mathbf{a}_1 a1和 a 2 \mathbf{a}_2 a2进行了线性组合的结果。这就是为什么说矩阵乘以向量的结果是矩阵列向量的线性组合。

相关推荐
aichitang202411 小时前
矩阵详解:从基础概念到实际应用
线性代数·算法·矩阵
cnbestec1 天前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不忘不弃1 天前
计算矩阵A和B的乘积
线性代数·算法·矩阵
不爱写代码的玉子1 天前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
Psycho_MrZhang2 天前
高等数学基础(矩阵基本操作转置和逆矩阵)
线性代数·矩阵
狐凄2 天前
Python实例题:Python计算线性代数
开发语言·python·线性代数
天宫风子2 天前
线性代数小述(二之前)
线性代数
天宫风子2 天前
线性代数小述(一)
线性代数·算法·矩阵·抽象代数
老歌老听老掉牙2 天前
使用 SymPy 进行向量和矩阵的高级操作
python·线性代数·算法·矩阵·sympy
fen_fen3 天前
学习笔记(25):线性代数,矩阵-矩阵乘法原理
笔记·学习·线性代数