通义说【线性代数】为什么矩阵乘以向量是一个对矩阵中列向量的线性组合

矩阵乘以向量可以被理解为该向量在矩阵所代表的空间变换下的映射结果,也可以看作是矩阵列向量的线性组合。为了更好地理解这一点,让我们从矩阵乘法的基本定义出发。

假设有一个 m × n m \times n m×n的矩阵 A A A和一个 n n n维列向量 x \mathbf{x} x,矩阵 A A A可以写成由它的列向量组成的集合,即:

A = [ a 1 , a 2 , ... , a n ] A = [\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n] A=[a1,a2,...,an]

这里每个 a i \mathbf{a}_i ai都是一个 m m m维的列向量。当我们将矩阵 A A A与向量 x \mathbf{x} x相乘时:

A x = x 1 a 1 + x 2 a 2 + ... + x n a n A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n Ax=x1a1+x2a2+...+xnan

这里 x \mathbf{x} x的每个分量 x i x_i xi都是实数,它们分别与矩阵 A A A的每一列向量相乘,然后所有这样的乘积向量再相加起来。这个操作实际上就是对矩阵 A A A的列向量进行了加权求和,权重就是向量 x \mathbf{x} x的各个分量。因此,结果向量 A x A\mathbf{x} Ax是矩阵 A A A的列空间中的一个向量,并且可以视为矩阵 A A A的列向量按照 x \mathbf{x} x中给出的系数的线性组合。

举例说明

如果我们有一个 3 × 2 3 \times 2 3×2的矩阵 A A A和一个 2 2 2维的向量 x \mathbf{x} x:

A = [ a 11 a 12 a 21 a 22 a 31 a 32 ] , x = [ x 1 x 2 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} A= a11a21a31a12a22a32 ,x=[x1x2]

那么矩阵乘法 A x A\mathbf{x} Ax可以写作:

A x = [ a 11 a 12 a 21 a 22 a 31 a 32 ] [ x 1 x 2 ] = x 1 [ a 11 a 21 a 31 ] + x 2 [ a 12 a 22 a 32 ] = x 1 a 1 + x 2 a 2 A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} +x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 Ax= a11a21a31a12a22a32 [x1x2]=x1 a11a21a31 +x2 a12a22a32 =x1a1+x2a2

这里的 a 1 \mathbf{a}_1 a1和 a 2 \mathbf{a}_2 a2分别是矩阵 A A A的第一列和第二列。因此, A x A\mathbf{x} Ax实际上就是 x \mathbf{x} x中的系数 x 1 x_1 x1和 x 2 x_2 x2对 a 1 \mathbf{a}_1 a1和 a 2 \mathbf{a}_2 a2进行了线性组合的结果。这就是为什么说矩阵乘以向量的结果是矩阵列向量的线性组合。

相关推荐
大山同学12 小时前
第三章线性判别函数(二)
线性代数·算法·机器学习
云云32112 小时前
搭建云手机平台的技术要求?
服务器·线性代数·安全·智能手机·矩阵
云云32112 小时前
云手机有哪些用途?云手机选择推荐
服务器·线性代数·安全·智能手机·矩阵
十年一梦实验室13 小时前
【C++】sophus : sim_details.hpp 实现了矩阵函数 W、其导数,以及其逆 (十七)
开发语言·c++·线性代数·矩阵
阿正的梦工坊13 小时前
范德蒙矩阵(Vandermonde 矩阵)简介:意义、用途及编程应用
线性代数·矩阵
哲学之窗19 小时前
齐次矩阵包含平移和旋转
线性代数·算法·矩阵
原装穿山乙思密达1 天前
如何利用矩阵化简平面上的二次型曲线
线性代数·矩阵·高等代数·解析几何
荒古前2 天前
线性代数期末总复习的点点滴滴(1)
人工智能·线性代数·机器学习
程序猿阿伟2 天前
《C++与 Armadillo:线性代数助力人工智能算法简化之路》
c++·人工智能·线性代数
云云3212 天前
云手机:小红书矩阵搭建方案
服务器·线性代数·安全·智能手机·矩阵