通义说【线性代数】为什么矩阵乘以向量是一个对矩阵中列向量的线性组合

矩阵乘以向量可以被理解为该向量在矩阵所代表的空间变换下的映射结果,也可以看作是矩阵列向量的线性组合。为了更好地理解这一点,让我们从矩阵乘法的基本定义出发。

假设有一个 m × n m \times n m×n的矩阵 A A A和一个 n n n维列向量 x \mathbf{x} x,矩阵 A A A可以写成由它的列向量组成的集合,即:

A = [ a 1 , a 2 , ... , a n ] A = [\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n] A=[a1,a2,...,an]

这里每个 a i \mathbf{a}_i ai都是一个 m m m维的列向量。当我们将矩阵 A A A与向量 x \mathbf{x} x相乘时:

A x = x 1 a 1 + x 2 a 2 + ... + x n a n A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n Ax=x1a1+x2a2+...+xnan

这里 x \mathbf{x} x的每个分量 x i x_i xi都是实数,它们分别与矩阵 A A A的每一列向量相乘,然后所有这样的乘积向量再相加起来。这个操作实际上就是对矩阵 A A A的列向量进行了加权求和,权重就是向量 x \mathbf{x} x的各个分量。因此,结果向量 A x A\mathbf{x} Ax是矩阵 A A A的列空间中的一个向量,并且可以视为矩阵 A A A的列向量按照 x \mathbf{x} x中给出的系数的线性组合。

举例说明

如果我们有一个 3 × 2 3 \times 2 3×2的矩阵 A A A和一个 2 2 2维的向量 x \mathbf{x} x:

A = [ a 11 a 12 a 21 a 22 a 31 a 32 ] , x = [ x 1 x 2 ] A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} A= a11a21a31a12a22a32 ,x=[x1x2]

那么矩阵乘法 A x A\mathbf{x} Ax可以写作:

A x = [ a 11 a 12 a 21 a 22 a 31 a 32 ] [ x 1 x 2 ] = x 1 [ a 11 a 21 a 31 ] + x 2 [ a 12 a 22 a 32 ] = x 1 a 1 + x 2 a 2 A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} +x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ a_{32} \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 Ax= a11a21a31a12a22a32 [x1x2]=x1 a11a21a31 +x2 a12a22a32 =x1a1+x2a2

这里的 a 1 \mathbf{a}_1 a1和 a 2 \mathbf{a}_2 a2分别是矩阵 A A A的第一列和第二列。因此, A x A\mathbf{x} Ax实际上就是 x \mathbf{x} x中的系数 x 1 x_1 x1和 x 2 x_2 x2对 a 1 \mathbf{a}_1 a1和 a 2 \mathbf{a}_2 a2进行了线性组合的结果。这就是为什么说矩阵乘以向量的结果是矩阵列向量的线性组合。

相关推荐
点云SLAM1 天前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
酌沧2 天前
大模型的底层运算线性代数
线性代数
老歌老听老掉牙3 天前
SymPy 矩阵到 NumPy 数组的全面转换指南
python·线性代数·矩阵·numpy·sympy
易木木木响叮当5 天前
有限元方法中的数值技术:行列式、求逆、矩阵方程
线性代数·矩阵
厦门辰迈智慧科技有限公司7 天前
现代化水库运行管理矩阵建设的要点
运维·网络·物联网·线性代数·安全·矩阵·监测
{⌐■_■}8 天前
【MongoDB】简单理解聚合操作,案例解析
数据库·线性代数·mongodb
盛世隐者10 天前
【线性代数】线性方程组与矩阵——行列式
线性代数
盛世隐者10 天前
【线性代数】线性方程组与矩阵——(1)线性方程组与矩阵初步
线性代数
盛世隐者11 天前
【线性代数】线性方程组与矩阵——(3)线性方程组解的结构
线性代数
盛世隐者11 天前
【线性代数】线性方程组与矩阵——(2)矩阵与线性方程组的解
线性代数