【书生2.5】XTuner 微调个人小助手认知

XTuner 微调个人小助手认知

【Intern Studio的gpu不足。本实验使用自有服务器】

1 环境安装

bash 复制代码
# 创建虚拟环境
conda create -n xtuner python=3.10 -y

# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner

# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.39.3
pip install streamlit==1.36.0

#安装 XTuner
# 创建一个目录,用来存放源代码
mkdir -p /root/InternLM/code

cd /root/InternLM/code

git clone -b v0.1.21  https://github.com/InternLM/XTuner /root/InternLM/code/XTuner

# 进入到源码目录
cd /root/InternLM/code/XTuner
conda activate xtuner0121

# 执行安装
pip install -e '.[deepspeed]'

# 我这里是早前的环境,可以直接进行升级
pip install xtuner --upgrade # 目前是0.1.23


2 材料准备

  • 项目根目录
bash 复制代码
cd /project/server/xtuner # 这是项目根目录

ln -s /project/models/model_dir/Shanghai_AI_Laboratory/internlm2-chat-1_8b Shanghai_AI_Laboratory/internlm2-chat-1_8b
  • 微调数据
bash 复制代码
mkdir -p datas
touch datas/assistant.json
# 通过脚本生成微调数据
touch xtuner_generate_assistant.py
#xtuner_generate_assistant.py
import json

# 设置用户的名字
name = '同志'
# 设置需要重复添加的数据次数
n = 8000

# 初始化数据
data = [
    {"conversation": [{"input": "请介绍一下你自己", "output": "我是{}的小助手,内在是上海AI实验室书生·浦语的1.8B大模型哦".format(name)}]},
    {"conversation": [{"input": "你在实战营做什么", "output": "我在这里帮助{}完成XTuner微调个人小助手的任务".format(name)}]}
]

# 通过循环,将初始化的对话数据重复添加到data列表中
for i in range(n):
    data.append(data[0])
    data.append(data[1])

# 将data列表中的数据写入到'datas/assistant.json'文件中
with open('datas/assistant.json', 'w', encoding='utf-8') as f:
    # 使用json.dump方法将数据以JSON格式写入文件
    # ensure_ascii=False 确保中文字符正常显示
    # indent=4 使得文件内容格式化,便于阅读
    json.dump(data, f, ensure_ascii=False, indent=4)
  • 微调的配置文件
bash 复制代码
xtuner copy-cfg internlm2_chat_1_8b_qlora_alpaca_e3 .

# 修改配置文件;必须修改的3个地方:
模型路径
数据路径
模型加载方式

3 启动微调

bash 复制代码
xtuner train ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py

在训练完后,可以看到

work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy

4 模型格式转化(LoRA 模型文件)

bash 复制代码
# 先获取最后保存的一个pth文件
pth_file=`ls -t ./work_dirs/internlm2_chat_1_8b_qlora_alpaca_e3_copy/*.pth | head -n 1`
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm2_chat_1_8b_qlora_alpaca_e3_copy.py ${pth_file} ./hf

5 模型合并

bash 复制代码
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert merge /project/serve/xtuner/Shanghai_AI_Laboratory/internlm2-chat-1_8b ./hf ./merged --max-shard-size 2GB

6 验证

微调前

bash 复制代码
vi xtuner_streamlit_demo.py
# xtuner_streamlit_demo.py :https://github.com/InternLM/Tutorial/blob/camp3/tools/xtuner_streamlit_demo.py
streamlit run /project/serve/xtuner/xtuner_streamlit_demo.py

微调后

bash 复制代码
# 修改xtuner_streamlit_demo.py 中的model路径
# model_name_or_path = "/project/serve/xtuner/merged"
streamlit run /project/serve/xtuner/xtuner_streamlit_demo.py

bug处理

internlm2.py Boolean value of Tensor with more than one value is ambiguous

可能原因: xtuner版本不匹配

升级xtuner:pip install xtuner --upgrade

相关推荐
昨日之日200631 分钟前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_33 分钟前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover34 分钟前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_7 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习