Flink1.14.* 各种算子在StreamTask控制下如何调用的源码

前言:

在 Apache Flink 中,StreamTask 类是处理流数据的核心执行单元。

它负责管理算子的生命周期,并调用算子的处理方法。StreamTask 类的全路径(即完整的包名和类名)如下:
StreamTask 类位于 flink-streaming-java 模块中,具体的包结构为 org.apache.flink.streaming.runtime.tasks

全路径如下

java 复制代码
flink-streaming-java/src/main/java/org/apache/flink/streaming/runtime/tasks/StreamTask.java

一、StreamTask执行算子的生命周期

先看StreamTask大体执行流程(忽略实现类的细节)

java 复制代码
public abstract class StreamTask<OUT, OP extends StreamOperator<OUT>> implements TaskInvokable, CheckpointableTask, CoordinatedTask, AsyncExceptionHandler, ContainingTaskDetails {
    protected OP mainOperator;
    private boolean mailboxLoopRunning;

    //第一步构造函数,把processInput赋值给mailboxProcessor
    protected StreamTask(Environment environment, @Nullable TimerService timerService, UncaughtExceptionHandler uncaughtExceptionHandler, StreamTaskActionExecutor actionExecutor, TaskMailbox mailbox) throws Exception {
        this.mailboxProcessor = new MailboxProcessor(this::processInput, mailbox, actionExecutor);
        //默认为true
        this.mailboxLoopRunning = true;

    }
    //第三步StreamTask执行
    public final void invoke() throws Exception {
        //省略代码
        this.runMailboxLoop(); 
    }
    //SourceStreamTask会重写这个方法,OneInputStreamTask不会重写
    protected void processInput(Controller controller) throws Exception {
        //删除干扰代码,
    }
}
public class MailboxProcessor implements Closeable {
    protected final MailboxDefaultAction mailboxDefaultAction;
    //第二步 构造函数把processInput方法赋值给mailboxDefaultAction
    public MailboxProcessor(MailboxDefaultAction mailboxDefaultAction, TaskMailbox mailbox, StreamTaskActionExecutor actionExecutor) {
        //这里mailboxDefaultAction传的是this::processInput
        this.mailboxDefaultAction = (MailboxDefaultAction)Preconditions.checkNotNull(mailboxDefaultAction);
    }
    //第四步,
    public void runMailboxLoop() throws Exception {
        //suspended默认是false
        this.suspended = !this.mailboxLoopRunning;
        //this.isNextLoopPossible默认是true
        while(this.isNextLoopPossible()) {
            this.mailboxProcessor.runMailboxLoop();
        }
    }
    private boolean isNextLoopPossible() {
        return !this.suspended;
    }

    //第五步,调用processInput
    public void runMailboxLoop() throws Exception {
        //这个执行的是processInput方法
        this.mailboxDefaultAction.runDefaultAction(defaultActionContext);
    }
}

不同的实现类都是按照上面的步骤初始化执行的

二、 Source的streamTask用的是SourceStreamTask

java 复制代码
@Internal
public class SourceStreamTask<OUT, SRC extends SourceFunction<OUT>, OP extends StreamSource<OUT, SRC>> extends StreamTask<OUT, OP> {

    private final SourceStreamTask<OUT, SRC, OP>.LegacySourceFunctionThread sourceThread;

    protected void init() {
        //这个mainOperator是StreamTask的字段,,
        SourceFunction<?> source = (SourceFunction)((StreamSource)this.mainOperator).getUserFunction();
    }    

    protected void processInput(Controller controller) throws Exception {
        //这里启动线程的run方法
        this.sourceThread.start();
        
    }

    private class LegacySourceFunctionThread extends Thread {
        private final CompletableFuture<Void> completionFuture = new CompletableFuture();

        LegacySourceFunctionThread() {
        }

        public void run() {
            try {
                if (!SourceStreamTask.this.operatorChain.isTaskDeployedAsFinished()) {
                    StreamTask.LOG.debug("Legacy source {} skip execution since the task is finished on restore", SourceStreamTask.this.getTaskNameWithSubtaskAndId());
                    ((StreamSource)SourceStreamTask.this.mainOperator).run(SourceStreamTask.this.lock, SourceStreamTask.this.operatorChain);
                }
                //删除干扰代码
            } catch (Throwable var2) {
                //删除干扰代码
            }

        }
    }
}

第一点需要注意的是由于SourceStreamTask重写了streamTaskprocessInput方法,所以streamTaskinvoke方法执行的是子类的SourceStreamTaskprocessInput方法

第二点看一下init方法,这里(SourceFunction)((StreamSource)this.mainOperator).getUserFunction()就是获取的source算子,不清楚的可以看一下kafkaSource这篇文章Flink 1.14.*版本kafkaSource源码由这里来触发SourceFunctionrun方法,即FlinkKafkaConsumerBaserun方法

三、基础转换操作,窗口用的是OneInputStreamTask

这种一般都是中间算子,或者最后一个算子(例如kafkaSink),所以主要涉及到从输入源获取数据,处理数据,并将结果写入输出中

如果连着看下面两篇文章,你就会知道为什么sink也是用的OneInputStreamTask
Flink 1.14.*中flatMap,filter等基本转换函数源码Flink 1.14.* 版本kafkaSink源码

1、初始化OneInputStreamTask

java 复制代码
public class OneInputStreamTask<IN, OUT> extends StreamTask<OUT, OneInputStreamOperator<IN, OUT>> {
    public void init() throws Exception {
        //output是私有类StreamTaskNetworkOutput对象
        DataOutput<IN> output = this.createDataOutput(numRecordsIn);
        StreamTaskInput<IN> input = this.createTaskInput(inputGate);
        //这个inputProcessor字段是给父类StreamTask初始化的,这时候父类inputProcessor=StreamOneInputProcessor
        this.inputProcessor = new StreamOneInputProcessor(input, output, this.operatorChain);
    }
    private StreamTaskInput<IN> createTaskInput(CheckpointedInputGate inputGate) {
        int numberOfInputChannels = inputGate.getNumberOfInputChannels();
        StatusWatermarkValve statusWatermarkValve = new StatusWatermarkValve(numberOfInputChannels);
        TypeSerializer<IN> inSerializer = this.configuration.getTypeSerializerIn1(this.getUserCodeClassLoader());
        return StreamTaskNetworkInputFactory.create(inputGate, inSerializer, this.getEnvironment().getIOManager(), statusWatermarkValve, 0, this.getEnvironment().getTaskStateManager().getInputRescalingDescriptor(), (gateIndex) -> {
            return ((StreamEdge)this.configuration.getInPhysicalEdges(this.getUserCodeClassLoader()).get(gateIndex)).getPartitioner();
        }, this.getEnvironment().getTaskInfo());
    }
    //返回的是下面私有类StreamTaskNetworkOutput对象
    private DataOutput<IN> createDataOutput(Counter numRecordsIn) {
        return new OneInputStreamTask.StreamTaskNetworkOutput(this.operatorChain.getFinishedOnRestoreInputOrDefault((Input)this.mainOperator), this.inputWatermarkGauge, numRecordsIn);
    }    
    //私有内部类,对应上面init中的output
    private static class StreamTaskNetworkOutput<IN> implements DataOutput<IN> {
        private final Input<IN> operator;
        public void emitRecord(StreamRecord<IN> record) throws Exception {
            //调用的算子的processElement方法
            this.operator.processElement(record);
        }
    }
   
}

这里是调用init初始化,StreamOneInputProcessor一起初始化了

java 复制代码
public final class StreamOneInputProcessor<IN> implements StreamInputProcessor {
    private StreamTaskInput<IN> input;
    private DataOutput<IN> output;
    public StreamOneInputProcessor(StreamTaskInput<IN> input, DataOutput<IN> output, BoundedMultiInput endOfInputAware) {
        //此input就是StreamTaskNetworkInput
        this.input = (StreamTaskInput)Preconditions.checkNotNull(input);
        //此output就是OneInputStreamTask里的私有类StreamTaskNetworkOutput对象
        this.output = (DataOutput)Preconditions.checkNotNull(output);
        this.endOfInputAware = (BoundedMultiInput)Preconditions.checkNotNull(endOfInputAware);
    }

    public DataInputStatus processInput() throws Exception {
        DataInputStatus status = this.input.emitNext(this.output);
        //删除干扰代码
        return status;
    }

}

后面看到this.inputProcessor.processInput其实就是调用的上面类的processInput方法

下面简单介绍一下StreamTaskNetworkInputFactory的创建的两种不同的StreamTaskInput,也可以不用看

java 复制代码
public class StreamTaskNetworkInputFactory {
    public StreamTaskNetworkInputFactory() {
    }
    //这里只看返回StreamTaskNetworkInput
    public static <T> StreamTaskInput<T> create(CheckpointedInputGate checkpointedInputGate, TypeSerializer<T> inputSerializer, IOManager ioManager, StatusWatermarkValve statusWatermarkValve, int inputIndex, InflightDataRescalingDescriptor rescalingDescriptorinflightDataRescalingDescriptor, Function<Integer, StreamPartitioner<?>> gatePartitioners, TaskInfo taskInfo) {
        return (StreamTaskInput)(rescalingDescriptorinflightDataRescalingDescriptor.equals(InflightDataRescalingDescriptor.NO_RESCALE) ? new StreamTaskNetworkInput(checkpointedInputGate, inputSerializer, ioManager, statusWatermarkValve, inputIndex) : new RescalingStreamTaskNetworkInput(checkpointedInputGate, inputSerializer, ioManager, statusWatermarkValve, inputIndex, rescalingDescriptorinflightDataRescalingDescriptor, gatePartitioners, taskInfo));
    }
}

StreamTaskNetworkInputFlink 中用于从网络接收数据并将其传递给任务处理的基本组件。它实现了 StreamInput 接口,并负责从网络缓冲区中读取数据,将数据反序列化为 StreamRecord,然后传递给下游的处理逻辑。
主要功能:

  1. 从网络接收数据:读取来自上游任务通过网络发送的数据。
  2. 数据反序列化:将接收到的字节数据反序列化为 StreamRecord 对象
  3. 调用下游处理逻辑:将反序列化后的 StreamRecord 对象传递给下游的处理逻辑(如操作符的 processElement 方法)。

RescalingStreamTaskNetworkInputStreamTaskNetworkInput 的一个扩展,用于处理任务重新缩放(rescaling)场景下的数据接收。任务重新缩放是指在运行时动态调整任务并行度,以适应负载变化。RescalingStreamTaskNetworkInput 主要用于确保在重新缩放过程中数据能够正确地重新分配和处理。
主要功能:

  1. 处理重新缩放场景:在任务重新缩放期间,确保数据能够正确地重新分配和处理。
  2. 数据重分配逻辑:在接收数据时,可能需要根据新的并行度进行数据重分配,以确保数据能够被正确处理。
  3. 继承自 StreamTaskNetworkInput:继承了 StreamTaskNetworkInput 的基本功能,同时增加了处理重新缩放场景的逻辑。

这样初始化部分就完成了

2、StreamTask运行invoke调用的是StreamTask的processInput方法

通过上面第一章节介绍StreamTask的,知道StreamTaskinvoke方法最终执行的是processInput方法,因为OneInputStreamTask不像SourceStreamTask重写了processInput方法,所以调用的还是父类StreamTaskprocessInput方法

java 复制代码
public abstract class StreamTask<OUT, OP extends StreamOperator<OUT>> implements TaskInvokable, CheckpointableTask, CoordinatedTask, AsyncExceptionHandler, ContainingTaskDetails {
    protected void processInput(Controller controller) throws Exception {
        DataInputStatus status = this.inputProcessor.processInput();
    }
}

这时候this.inputProcessor=StreamOneInputProcessor,调用processInput即调用StreamOneInputProcessorprocessInput方法

java 复制代码
//从OneInputStreamTask初始化章节粘贴过来的,方便
public final class StreamOneInputProcessor<IN> implements StreamInputProcessor {
    private StreamTaskInput<IN> input;
    private DataOutput<IN> output;
    public StreamOneInputProcessor(StreamTaskInput<IN> input, DataOutput<IN> output, BoundedMultiInput endOfInputAware) {
        //此input就是StreamTaskNetworkInput
        this.input = (StreamTaskInput)Preconditions.checkNotNull(input);
        //此output就是OneInputStreamTask里的私有类StreamTaskNetworkOutput对象
        this.output = (DataOutput)Preconditions.checkNotNull(output);
        this.endOfInputAware = (BoundedMultiInput)Preconditions.checkNotNull(endOfInputAware);
    }

    public DataInputStatus processInput() throws Exception {
        DataInputStatus status = this.input.emitNext(this.output);
        //删除干扰代码
        return status;
    }

}

StreamOneInputProcessor.processInput中会调this.input.emitNext(this.output),因为构造StreamOneInputProcessor对象时已经赋值

所以processInput方法中DataInputStatus status = this.input.emitNext(this.output) 调用的是StreamTaskNetworkInputemitNext方法;

java 复制代码
public final class StreamTaskNetworkInput<T> extends AbstractStreamTaskNetworkInput<T, SpillingAdaptiveSpanningRecordDeserializer<DeserializationDelegate<StreamElement>>> {

}
java 复制代码
public abstract class AbstractStreamTaskNetworkInput<T, R extends RecordDeserializer<DeserializationDelegate<StreamElement>>> implements StreamTaskInput<T> {
    
    //从缓冲区读取到当前内存中
    private R currentRecordDeserializer = null;

    public DataInputStatus emitNext(DataOutput<T> output) throws Exception {
        while(true) {
            //当前内存有缓冲区的数据
            if (this.currentRecordDeserializer != null) {
                DeserializationResult result;
                try {
                    //从deserializationDelegate尝试获取下一个记录
                    result = this.currentRecordDeserializer.getNextRecord(this.deserializationDelegate);
                } catch (IOException var4) {
                    throw new IOException(String.format("Can't get next record for channel %s", this.lastChannel), var4);
                }
                if (result.isFullRecord()) {
                    //处理该记录并返回
                    this.processElement((StreamElement)this.deserializationDelegate.getInstance(), output);
                    return DataInputStatus.MORE_AVAILABLE;
                }
            }
            //通过pollNext()方法从checkpointedInputGate中获取下一个元素,并将其封装在Optional中。
            Optional<BufferOrEvent> bufferOrEvent = this.checkpointedInputGate.pollNext();
            //然后检查bufferOrEvent是否存在
            if (bufferOrEvent.isPresent()) {
                //如果是缓冲区,则调用processBuffer方法进行处理
                if (((BufferOrEvent)bufferOrEvent.get()).isBuffer()) {
                    this.processBuffer((BufferOrEvent)bufferOrEvent.get());
                    continue;
                }
                //如果是事件,则调用processEvent方法进行处理并返回结果
                return this.processEvent((BufferOrEvent)bufferOrEvent.get());
            }
        }
    }
}

最终调的是父类AbstractStreamTaskNetworkInputemitNext方法

3、从缓冲区获取数据放入到内存中

通过上面emitNext实现,while循环中先判断当前内存区是否有缓冲区的数据,有则处理结束此次emitNext方法,如果没有则从缓冲区获取数据到当前内存区,再跳过本次循环,让下一个循环开始执行处理内存区数据的方法
this.checkpointedInputGate.pollNext()这个就不看了,你就知道从缓冲区返回数据就行了,

看一下processBuffer方法

java 复制代码
protected void processBuffer(BufferOrEvent bufferOrEvent) throws IOException {
    //获取缓存管道信息
    this.lastChannel = bufferOrEvent.getChannelInfo();
    Preconditions.checkState(this.lastChannel != null);
    //可以理解为给currentRecordDeserializer初始化,选定类型
    this.currentRecordDeserializer = this.getActiveSerializer(bufferOrEvent.getChannelInfo());
    Preconditions.checkState(this.currentRecordDeserializer != null, "currentRecordDeserializer has already been released");
    //把缓冲区的数据写入到当前内存区
    this.currentRecordDeserializer.setNextBuffer(bufferOrEvent.getBuffer());
}

4、调用算子的processElement方法处理数据,

通过StreamOneInputProcessor初始化知道,入参output实际上是OneInputStreamTask里的私有类StreamTaskNetworkOutput对象

java 复制代码
private void processElement(StreamElement recordOrMark, DataOutput<T> output) throws Exception {
    if (recordOrMark.isRecord()) {
        //这里就调用了OneInputStreamTask里的私有类StreamTaskNetworkOutput中的emitRecord方法
        output.emitRecord(recordOrMark.asRecord());
    }
}
java 复制代码
private static class StreamTaskNetworkOutput<IN> implements DataOutput<IN> {
    private final Input<IN> operator;
    public void emitRecord(StreamRecord<IN> record) throws Exception {
        //调用的算子的processElement方法
        this.operator.processElement(record);
    }
}

emitRecord方法就会调用算子的processElement方法,之后就可以看基础转换函数和窗口函数文章中,他们是被调用processElement触发的

如果不清楚可以看Flink 1.14.*中flatMap,filter等基本转换函数源码

四、sink的streamTask用的也是OneInputStreamTask

sink可以看成是一个像flatMapfilter、窗口一样的算子,通过OneInputStreamTask触发到sinkFuncitionprocessElement方法,执行流程都是一样的,

不懂的可以看下面两篇文章,比对一下,sink和基本转换、窗口算子触发方式是否一样
Flink 1.14.*中flatMap,filter等基本转换函数源码Flink 1.14.* 版本kafkaSink源码

五、OneInputStreamTask和SourceStreamTask类关系图

比对两个关系图,SourceStreamTask多了SourceFunction接口和streamSource

相关推荐
Pingszi34 分钟前
3.阿里云flink&selectdb-py作业
python·阿里云·flink·数仓
神秘打工猴10 小时前
Flink 集群有哪些⻆⾊?各⾃有什么作⽤?
大数据·flink
小刘鸭!10 小时前
Flink的三种时间语义
大数据·flink
天冬忘忧10 小时前
Flink优化----FlinkSQL 调优
大数据·sql·flink
m0_5485030312 小时前
Flink基本原理 + WebUI说明 + 常见问题分析
大数据·flink
Apache Flink20 小时前
探索Flink动态CEP:杭州银行的实战案例
大数据·单例模式·flink
得谷养人1 天前
flink-1.16 table sql 消费 kafka 数据,指定时间戳位置消费数据报错:Invalid negative offset 问题解决
sql·flink·kafka
神秘打工猴1 天前
Flink 中的 Time 有哪⼏种?
flink
小刘鸭!1 天前
Flink中并行度和slot的关系——任务和任务槽
大数据·flink
core5122 天前
flink cdc各种数据库 jar下载地址
mysql·oracle·flink·jar·oceanbase·cdc