【王树森】BERT:预训练Transformer模型(个人向笔记)

前言

  • BERT:B idirectional E ncoder R epresentations from Transformer
  • BERT是用来预训练Transformer模型的encoder的
  • 本节课只讲述主要思想
  • BERT用两个主要思想来训练Transformer的encoder网络:①随机遮挡单词,让encoder根据上下文来预测被遮挡的单词。②把两句话放在一起,让encoder判断是不是原文相邻的两句话

Randomly mask a word

  • 随机遮挡一个单词,让神经网络来预测这个单词是什么:
  • 我们把cat遮住后如下图所示:我们把原来的 x 2 x_2 x2 变为了 x M x_M xM,由前几节课transformer的原理可以知道:最后的输出不仅仅取决于 x 2 x_2 x2 或 x M x_M xM,而是包含整句话的信息,最后我们把 u M u_M uM 输入到 Softmax 后,期望其中的 cat 的概率是最大的
  • 我们把被遮住的单词 cat 的one-hot向量称为 e e e, p p p 为上面 Softmax 输出的概率分布向量,那么我们要让 p p p 尽可能地接近 e e e,于是我们可以把它丢进交叉熵损失函数里面进行反向传播,梯度下降:
  • BERT 不需要人为打标,可以自动遮住单词然后生成标签。因此可以拥有很多的数据,可以训练很大的模型

Predict the Next Sentence

  • 给定随机的两句话,问这两句在文中是否是相邻的
  • 其中输入时两句话,其中 [CLS] 时分类的标号,[SEP] 是分句的标号
  • 该方法会在原来的文本随机选取句子,其中一半是相邻的,一半不是相邻的

  • CLS符号在经过 Embedding 和 Transformer 的 Encoder 后会生成一个向量 c c c,其由一个二分类器来计算值,虽然由 attention 机制我们可以知道: c c c 还依赖于文中的其他信息,这样就能学到两句话的信息,这样我们就可以让 c c c 和标签做交叉熵损失,然后就能反向传播和梯度下降来训练。相邻两句话通常含有关联,这样训练就能让 Embedding 和 Encoder 学到这种关联信息。

Combining the two methods

  • 把上面两个任务结合起来:这样就有多个标签

  • 假设我们有两个单词被遮住了,那么就有三个任务,三个损失函数,那么最后的损失函数就是三个损失函数之和
  • BERT 的优点在于不用人工标注数据,因为人工标注数据是非常昂贵的。而 BERT 可以自动生成标签,这是一个非常好的性质
  • 缺点在于 BERT 的计算代价很大:
相关推荐
吉大一菜鸡43 分钟前
FPGA学习(基于小梅哥Xilinx FPGA)学习笔记
笔记·学习·fpga开发
CCSBRIDGE3 小时前
Magento2项目部署笔记
笔记
亦枫Leonlew4 小时前
微积分复习笔记 Calculus Volume 2 - 5.1 Sequences
笔记·数学·微积分
爱码小白4 小时前
网络编程(王铭东老师)笔记
服务器·网络·笔记
LuH11245 小时前
【论文阅读笔记】Learning to sample
论文阅读·笔记·图形渲染·点云
一棵开花的树,枝芽无限靠近你6 小时前
【PPTist】组件结构设计、主题切换
前端·笔记·学习·编辑器
犬余7 小时前
设计模式之桥接模式:抽象与实现之间的分离艺术
笔记·学习·设计模式·桥接模式
数据爬坡ing8 小时前
小白考研历程:跌跌撞撞,起起伏伏,五个月备战历程!!!
大数据·笔记·考研·数据分析
咖肥猫8 小时前
【ue5学习笔记2】在场景放入一个物体的蓝图输入事件无效?
笔记·学习·ue5
郭尘帅6669 小时前
Ajax学习笔记
笔记·学习·ajax