从0开始深度学习(3)——概率

1 基本概率论

  • 大数定律(law of large numbers):随着投掷次数的增加,这个估计值会越来越接近真实的潜在概率。
  • 从概率分布中抽取样本的过程称为抽样(sampling)
  • 将概率分配给一些离散选择的分布称为多项分布(multinomial distribution)

1.1 概率论公理

概率(probability)可以被认为是将集合映射到真实值的函数。
在给定的样本空间
S
中,事件A 的概率, 表示为P(A) ,满足以下属性:

1.2 随机变量

  • 离散随机变量(discrete random variable) :取值为有限个或可数无限个值的随机变量称为离散随机变量。这些值通常是整数或有限范围内的离散点。例如:抛硬币的次数、骰子的点数、某段时间内到达的顾客数量等

  • 连续随机变量(continuous random variable) :取值为实数区间上的任何值的随机变量称为连续随机变量。这些值通常是无限可分的,并且可以在一定范围内取任意值。例如:一个人的身高、重量、温度测量等

  • 概率密度函数(Probability Density Function, PDF):描述连续随机变量的概率分布的一种函数,例如:用身高举例,PDF通常是指在一个特定人群中随机选取一个人的身高落在某个区间内的概率

2 处理多个随机变量

2.1 联合概率(joint probability)

指的是两个或多个事件同时发生的概率。如果我们将这些事件记作A和B,则联合概率P(A, B)表示事件A和事件B共同发生的概率。

2.2 条件概率(conditional probability)

指的是给定另一个事件已经发生的条件下,某个事件发生的概率。条件概率通常用符号 P(A∣B)表示,读作"在事件B发生的条件下事件A发生的概率"。

2.3贝叶斯定理


2.4 边际化(Marginalization)

指从联合概率分布中去除一个或多个随机变量的过程。

边际化的一个常见用途是从联合概率分布中提取单个变量或一组变量的概率分布。这通常通过求和 (对于离散变量)或积分 (对于连续变量)来实现,从而消除掉我们不感兴趣的变量。

边际化结果的概率或分布称为边际概率(marginal probability) 或边际分布(marginal distribution)。

2.5 独立性

如果两个随机变量A和B是独立的,意味着事件A的发生跟事件B的发生无关

3 期望与方差

3.1 期望(Expected Value)

指重复进行大量相同的试验时,随机变量的观测值的平均值。

3.1.1 对于离散随机变量X

3.2.1 对于连续随机变量X

3.2 方差(Variance)

方差是衡量随机变量与其期望值之间偏差平方的平均值

PS:

方差的平方根被称为标准差(standard deviation)

相关推荐
青松@FasterAI26 分钟前
【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)
人工智能·自然语言处理
AIGC大时代41 分钟前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek
硅谷秋水42 分钟前
GAIA-2:用于自动驾驶的可控多视图生成世界模型
人工智能·机器学习·自动驾驶
多巴胺与内啡肽.1 小时前
深度学习--自然语言处理统计语言与神经语言模型
深度学习·语言模型·自然语言处理
偶尔微微一笑1 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
深度之眼1 小时前
2025时间序列都有哪些创新点可做——总结篇
人工智能·深度学习·机器学习·时间序列
晓数1 小时前
【硬核干货】JetBrains AI Assistant 干货笔记
人工智能·笔记·jetbrains·ai assistant
jndingxin2 小时前
OpenCV 图形API(60)颜色空间转换-----将图像从 YUV 色彩空间转换为 RGB 色彩空间函数YUV2RGB()
人工智能·opencv·计算机视觉
Sherlock Ma2 小时前
PDFMathTranslate:基于LLM的PDF文档翻译及双语对照的工具【使用教程】
人工智能·pytorch·语言模型·pdf·大模型·机器翻译·deepseek
知舟不叙2 小时前
OpenCV中的SIFT特征提取
人工智能·opencv·计算机视觉