mysql创建新表,同步数据

import os

import argparse

import glob

import cv2

import numpy as np

import onnxruntime

import tqdm

import pymysql

import time

import json

from datetime import datetime

os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 使用 GPU 0

def get_connection():

"""创建并返回一个新的数据库连接。"""

数据库连接信息

host = 'localhost'

user = 'root'

password = '123456'

database = 'video_streaming_database'

return pymysql.connect(host=host, user=user, password=password, database=database)

def get_connection_results():

"""创建并返回一个新的数据库连接。"""

数据库连接信息

host = 'localhost'

user = 'root'

password = '123456'

database = 'results'

return pymysql.connect(host=host, user=user, password=password, database=database)

def ensure_connection(connection):

"""确保连接有效。如果连接无效,则重新建立连接。"""

if connection is None or not connection.open:

print("Connection is invalid or closed. Reconnecting...")

return get_connection()

return connection

def ensure_connection_results(connection):

"""确保连接有效。如果连接无效,则重新建立连接。"""

if connection is None or not connection.open:

print("Connection is invalid or closed. Reconnecting...")

return get_connection_results()

return connection

def get_parser():

parser = argparse.ArgumentParser(description="onnx model inference")

parser.add_argument(
    "--model-path",
    default=R"/home/hitsz/yk_workspace/Yolov5_track/weights/sbs_r50_0206_export_params_True.onnx",
    help="onnx model path"
)
parser.add_argument(
    "--input",
    default="/home/hitsz/yk_workspace/Yolov5_track/test_4S_videos/test_yk1_det3/save_crops/test_yk1/person/1/*jpg",
    nargs="+",
    help="A list of space separated input images; "
         "or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
    "--output",
    default='/home/hitsz/yk_workspace/Yolov5_track/02_output_det/onnx_output',
    help='path to save the output features'
)
parser.add_argument(
    "--height",
    type=int,
    default=384,
    help="height of image"
)
parser.add_argument(
    "--width",
    type=int,
    default=128,
    help="width of image"
)
return parser

def preprocess(image_path, image_height, image_width):

original_image = cv2.imread(image_path)

norm_mean = np.array([0.485, 0.456, 0.406])

norm_std = np.array([0.229, 0.224, 0.225])

normalized_img = (original_image / 255.0 - norm_mean) / norm_std

original_image = normalized_img[:, :, ::-1]

img = cv2.resize(original_image, (image_width, image_height), interpolation=cv2.INTER_CUBIC)

img = img.astype("float32").transpose(2, 0, 1)[np.newaxis] # (1, 3, h, w)

return img

def normalize(nparray, order=2, axis=-1):

"""Normalize a N-D numpy array along the specified axis."""

norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)

return nparray / (norm + np.finfo(np.float32).eps)

data2 = []

if name == "main ":

args = get_parser().parse_args()

# 配置数据库连接
db_config = {
    'host': 'localhost',
    'user': 'root',
    'password': '123456',
    'database': 'video_streaming_database',
}

db_config_results = {
    'host': 'localhost',
    'user': 'root',
    'password': '123456',
    'database': 'results',
}
# 定义批处理大小
batch_size = 500
pre_end_frame_idx = 10000
# 连接到数据库
connection = pymysql.connect(**db_config)
connection_results = pymysql.connect(**db_config_results)
while True:
    connection = ensure_connection(connection)  # 确保连接有效
    with connection.cursor() as cursor:
        cursor.execute("SELECT MAX(id) FROM new_detection_tracking_results_1")
        max_id = cursor.fetchone()[0]
        print(max_id)
        # 获取ID前面100条数据
        if max_id is not None:
            end_id = max(1, max_id-1)
            cursor.execute(f"SELECT crop_image_path FROM new_detection_tracking_results_1 WHERE id = {end_id}")
            crop_image_path = cursor.fetchall()                    
            connection.commit()
            connection.close()

    if max_id is not None:
        dir_path = os.path.dirname(os.path.dirname(crop_image_path[0][0]))
        file_name = os.path.basename(crop_image_path[0][0])
        cam_ip = file_name.split("_")[0]
        end_frame_idx = int(file_name.split("_")[1]) - 1440
        for i in range(pre_end_frame_idx, end_frame_idx):
            json_path = os.path.join(dir_path, cam_ip + "_" + str(i).zfill(8) + "_track.json")
            if not os.path.exists(json_path):
                continue
            creation_time = os.path.getctime(json_path)
            # 转换为 '%Y-%m-%d %H:%M:%S' 格式
            formatted_creation_time = datetime.fromtimestamp(creation_time).strftime('%Y-%m-%d %H:%M:%S')
            # print(formatted_creation_time)
            for j in range(48):
                json_name_path = os.path.join(dir_path, cam_ip + "_" + str(i-j).zfill(8) + "_track_name.json")
                if os.path.exists(json_name_path):
                    break
            id_name = {}
            if os.path.exists(json_name_path):
                with open(json_name_path, 'r') as f1:
                    id_name = json.load(f1)
            else:
                continue
            if os.path.exists(json_path[:-5]):
                continue
            if os.path.exists(json_path):      
                with open(json_path, 'r') as f:
                    tracking_data = json.load(f)
                # 遍历跟踪结果,并绘制到图像上
                for key in tracking_data.keys():
                    id = key
                    action = tracking_data[key][6]
                    if len(action.split("||")) == 0:
                        continue
                    elif len(action.split("||")) == 1:
                        action_show = action.split("||")[0]
                    else:
                        action_show = action.split("||")[0] + " " + action.split("||")[1]

                    if len(id_name) > 0 and key.zfill(4) in id_name.keys():
                        name = id_name[key.zfill(4)].split("_")[0] + ": 0." + id_name[key.zfill(4)].split("_")[-1][:2]
                        data2.append((
                                cam_ip,
                                int(end_frame_idx), \
                                int(key),\
                                name,\
                                action_show,\
                                formatted_creation_time
                                ))
                    else:
                        name = ""
                os.makedirs(json_path[:-5], exist_ok=True)
                print('---------len(data2) is:',len(data2))
                if len(data2) >= 500:
                    connection_results = ensure_connection_results(connection_results)  # 确保连接有效
                    with connection_results.cursor() as cursor:
                        # 插入数据的SQL语句
                        insert_sql = """
                        INSERT INTO time_results (camera_ip, frame_number, tracking_id, matched_id, action_recognized, event_datetime)
                        VALUES (%s, %s, %s, %s, %s, %s);
                        """
                        # 执行插入操作
                        cursor.executemany(insert_sql, data2)
                        connection_results.commit()
                    data2 = []

    pre_end_frame_idx = end_frame_idx   
    time.sleep(5)
相关推荐
Deutsch.9 分钟前
MySQL——主从同步
mysql·adb
猿小喵26 分钟前
MySQL四种隔离级别
数据库·mysql
Y编程小白32 分钟前
Redis可视化工具--RedisDesktopManager的安装
数据库·redis·缓存
洪小帅1 小时前
Django 的 `Meta` 类和外键的使用
数据库·python·django·sqlite
祁思妙想1 小时前
【LeetCode】--- MySQL刷题集合
数据库·mysql
V+zmm101342 小时前
教育培训微信小程序ssm+论文源码调试讲解
java·数据库·微信小程序·小程序·毕业设计
m0_748248022 小时前
【MySQL】C# 连接MySQL
数据库·mysql·c#
东软吴彦祖3 小时前
包安装利用 LNMP 实现 phpMyAdmin 的负载均衡并利用Redis实现会话保持nginx
linux·redis·mysql·nginx·缓存·负载均衡
慵懒的猫mi4 小时前
deepin分享-Linux & Windows 双系统时间不一致解决方案
linux·运维·windows·mysql·deepin
小高不明5 小时前
仿 RabbitMQ 的消息队列2(实战项目)
java·数据库·spring boot·spring·rabbitmq·mvc