双流join

在 Flink 中实现双流 join 主要有两种方式:基于窗口的 join(Window Join)和基于时间区间的 join(Interval Join)。以下是这两种方式的简要说明和代码示例:

  1. 基于窗口的 join(Window Join):

Tumbling Window Join:数据根据窗口大小进行分组,每个窗口内的数据进行 join 操作。例如,可以使用 TumblingEventTimeWindows.of(Time.milliseconds(2)) 来定义一个基于事件时间的滚动窗口。

Sliding Window Join:数据根据滑动窗口进行分组,窗口内的数据会随着时间滑动进行 join 操作。例如,可以使用 SlidingEventTimeWindows.of(Time.milliseconds(2), Time.milliseconds(1)) 来定义一个大小为 2 毫秒,滑动间隔为 1 毫秒的滑动窗口。

Session Window Join:数据根据会话窗口进行分组,会话窗口是根据数据的间隙来定义的,例如,可以使用 EventTimeSessionWindows.withGap(Time.milliseconds(1)) 来定义会话间隙为 1 毫秒的会话窗口。

示例代码:

DataStream<Integer> orangeStream = ...;

DataStream<Integer> greenStream = ...;

orangeStream.join(greenStream)

.where(<KeySelector>)

.equalTo(<KeySelector>)

.window(TumblingEventTimeWindows.of(Time.milliseconds(2)))

.apply(new JoinFunction<Integer, Integer, String>() {

@Override

public String join(Integer first, Integer second) {

return first + "," + second;

}

});

  1. 基于时间区间的 join(Interval Join):

Interval Join 允许定义一个时间区间,使得一个流中的数据可以与另一个流中在这个时间区间内的数据进行 join 操作。例如,可以使用 .between(Time.milliseconds(-2), Time.milliseconds(1)) 来定义一个从当前时间向前 2 毫秒到向后 1 毫秒的时间区间。

示例代码:

DataStream<Integer> orangeStream = ...;

DataStream<Integer> greenStream = ...;

orangeStream

.keyBy(<KeySelector>)

.intervalJoin(greenStream.keyBy(<KeySelector>))

.between(Time.milliseconds(-2), Time.milliseconds(1))

.process(new ProcessJoinFunction<Integer, Integer, String>() {

@Override

public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {

out.collect(left + "," + right);

}

});

在实际应用中,选择哪种方式取决于具体的业务需求和数据特性。例如,如果需要实时统计每分钟内的订单商品分布详情,可以使用 Tumbling Window Join。如果数据到达时间不确定,可以使用 Interval Join 来处理可能存在的时间偏差。

以上信息综合了多个来源,包括阿里云开发者社区的 Flink 教程 和 CSDN 博客的文章 。

相关推荐
在未来等你2 小时前
Elasticsearch面试精讲 Day 18:内存管理与JVM调优
大数据·分布式·elasticsearch·搜索引擎·面试
智海观潮2 小时前
Spark SQL | 目前Spark社区最活跃的组件之一
大数据·spark
Lx3522 小时前
Hadoop数据一致性保障:处理分布式系统常见问题
大数据·hadoop
婲落ヽ紅顏誶3 小时前
测试es向量检索
大数据·elasticsearch·搜索引擎
IT学长编程3 小时前
计算机毕业设计 基于Hadoop豆瓣电影数据可视化分析设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试
大数据·hadoop·python·django·毕业设计·毕业论文·豆瓣电影数据可视化分析
semantist@语校4 小时前
第二十篇|SAMU教育学院的教育数据剖析:制度阈值、能力矩阵与升学网络
大数据·数据库·人工智能·百度·语言模型·矩阵·prompt
Dobby_054 小时前
【Hadoop】Yarn:Hadoop 生态的资源操作系统
大数据·hadoop·分布式·yarn
数智顾问4 小时前
基于Hadoop进程的分布式计算任务调度与优化实践——深入理解分布式计算引擎的核心机制
大数据
笨蛋少年派5 小时前
安装Hadoop中遇到的一些问题和解决
大数据·hadoop·分布式
在未来等你5 小时前
Kafka面试精讲 Day 18:磁盘IO与网络优化
大数据·分布式·面试·kafka·消息队列