双流join

在 Flink 中实现双流 join 主要有两种方式:基于窗口的 join(Window Join)和基于时间区间的 join(Interval Join)。以下是这两种方式的简要说明和代码示例:

  1. 基于窗口的 join(Window Join):

Tumbling Window Join:数据根据窗口大小进行分组,每个窗口内的数据进行 join 操作。例如,可以使用 TumblingEventTimeWindows.of(Time.milliseconds(2)) 来定义一个基于事件时间的滚动窗口。

Sliding Window Join:数据根据滑动窗口进行分组,窗口内的数据会随着时间滑动进行 join 操作。例如,可以使用 SlidingEventTimeWindows.of(Time.milliseconds(2), Time.milliseconds(1)) 来定义一个大小为 2 毫秒,滑动间隔为 1 毫秒的滑动窗口。

Session Window Join:数据根据会话窗口进行分组,会话窗口是根据数据的间隙来定义的,例如,可以使用 EventTimeSessionWindows.withGap(Time.milliseconds(1)) 来定义会话间隙为 1 毫秒的会话窗口。

示例代码:

DataStream<Integer> orangeStream = ...;

DataStream<Integer> greenStream = ...;

orangeStream.join(greenStream)

.where(<KeySelector>)

.equalTo(<KeySelector>)

.window(TumblingEventTimeWindows.of(Time.milliseconds(2)))

.apply(new JoinFunction<Integer, Integer, String>() {

@Override

public String join(Integer first, Integer second) {

return first + "," + second;

}

});

  1. 基于时间区间的 join(Interval Join):

Interval Join 允许定义一个时间区间,使得一个流中的数据可以与另一个流中在这个时间区间内的数据进行 join 操作。例如,可以使用 .between(Time.milliseconds(-2), Time.milliseconds(1)) 来定义一个从当前时间向前 2 毫秒到向后 1 毫秒的时间区间。

示例代码:

DataStream<Integer> orangeStream = ...;

DataStream<Integer> greenStream = ...;

orangeStream

.keyBy(<KeySelector>)

.intervalJoin(greenStream.keyBy(<KeySelector>))

.between(Time.milliseconds(-2), Time.milliseconds(1))

.process(new ProcessJoinFunction<Integer, Integer, String>() {

@Override

public void processElement(Integer left, Integer right, Context ctx, Collector<String> out) {

out.collect(left + "," + right);

}

});

在实际应用中,选择哪种方式取决于具体的业务需求和数据特性。例如,如果需要实时统计每分钟内的订单商品分布详情,可以使用 Tumbling Window Join。如果数据到达时间不确定,可以使用 Interval Join 来处理可能存在的时间偏差。

以上信息综合了多个来源,包括阿里云开发者社区的 Flink 教程 和 CSDN 博客的文章 。

相关推荐
仟濹8 小时前
「pandas 与 numpy」数据分析与处理全流程【数据分析全栈攻略:爬虫+处理+可视化+报告】
大数据·python·数据分析·numpy·pandas
琼方8 小时前
“十五五”时期智慧城市赋能全国一体化数据市场建设:战略路径与政策建议[ 注:本建议基于公开政策文件与行业实践研究,数据引用截至2025年6月11日。]
大数据·人工智能·智慧城市
云云3218 小时前
亚矩阵云手机针对AdMob广告平台怎么进行多账号的广告风控
大数据·网络·线性代数·游戏·智能手机·矩阵
Sui_Network9 小时前
WAYE.ai 为Sui 上 AI 的下一个时代赋能
大数据·前端·人工智能·物联网·游戏
BAOYUCompany9 小时前
暴雨亮相2025中关村论坛数字金融与金融安全大会
大数据·人工智能
火龙谷10 小时前
【hadoop】疫情离线分析案例
大数据·hadoop·分布式
大师兄带你刨AI10 小时前
「AI产业」| 《2025中国低空经济商业洞察报告(商业无人机应用篇)》
大数据·人工智能
孚为智能科技11 小时前
集装箱残损识别系统如何检测残损?它的识别率能达到多少?
大数据·图像处理·人工智能·计算机视觉·视觉检测
weixin_5051544613 小时前
数字孪生包含哪些技术和创新?
大数据·人工智能·物联网·数据安全·数字孪生
A达峰绮13 小时前
AI时代的行业重构:机遇、挑战与生存法则
大数据·人工智能·经验分享·ai·推荐算法