神经网络的线性部分和非线性部分

神经网络的线性部分非线性部分是其构成中的两个核心元素,它们共同决定了模型的能力和行为。让我们分别看一下这两部分:

1. 线性部分

线性部分通常是指神经网络中的加权和操作。这部分可以用以下形式表示:

z = W \\cdot x + b

  • W 是权重矩阵,x 是输入向量,b 是偏置项。
  • 这个表达式是线性的,因为它是关于输入 x 的线性组合。线性意味着输出是输入的简单加权和变化,没有复杂的弯曲或转折。

在这种线性关系中,如果输入发生小的变化,输出也会有相应的比例变化。这部分的特性是非常简单的,它没有能力去捕捉复杂的数据模式或特征。因此,单靠线性结构的神经网络是无法处理复杂任务的。

2. 非线性部分

非线性部分是通过激活函数引入的。常见的激活函数包括 ReLU(修正线性单元),Sigmoid 和 Tanh 等。以 ReLU 为例,它的定义是:

f(z) = \\max(0, z)

  • 这个函数是非线性 的,因为它改变了输入与输出之间的关系:当 z 大于 0 时,输出等于输入;当 z 小于等于 0 时,输出等于 0。
  • 非线性函数使得神经网络能够对输入的变化进行复杂的反应,从而捕捉数据中的非线性模式和复杂关系。

线性与非线性的结合

在神经网络中,线性部分(加权求和)和非线性部分(激活函数)是交替结合的。这种结合使得神经网络可以表达非常复杂的函数关系。单纯的线性层虽然简单,但无法解决复杂问题,而非线性层则赋予了模型更强的表达能力。

为什么线性部分会导致对抗样本脆弱性?

论文指出,神经网络对对抗样本的脆弱性并不完全是由其非线性部分造成的,实际上,线性部分在高维空间中的行为已经足以导致这种脆弱性。在高维空间中,线性函数可以被轻微的扰动很容易地推向不同的分类边界,即便扰动是很小的。这解释了为什么生成对抗样本不需要高度复杂的非线性,只要存在线性操作,模型就有可能被攻击。

因此,尽管神经网络的非线性部分使它能够解决复杂任务,但在对抗攻击的情况下,线性部分却成了主要的薄弱点。

相关推荐
蹦蹦跳跳真可爱58910 分钟前
Python----神经网络(基于DNN的风电功率预测)
人工智能·pytorch·python·深度学习·神经网络·dnn
Jackson@ML14 分钟前
一分钟了解机器学习
人工智能·机器学习
四万二千20 分钟前
5月16日复盘-目标检测开端
人工智能·目标检测·计算机视觉
带娃的IT创业者23 分钟前
《AI大模型应知应会100篇》第65篇:基于大模型的文档问答系统实现
人工智能
TGITCIC35 分钟前
智脑进化:神经网络如何从单层感知机迈向深度学习新纪元
人工智能·深度学习·神经网络
妄想成为master1 小时前
计算机视觉----常见卷积汇总
人工智能·计算机视觉
jndingxin1 小时前
OpenCV CUDA 模块中用于在 GPU 上计算矩阵中每个元素的绝对值或复数的模函数abs()
人工智能·opencv
Code哈哈笑1 小时前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm
拓端研究室TRL1 小时前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析
loopdeloop2 小时前
预测模型开发与评估:基于机器学习的数据分析实践
人工智能