神经网络的线性部分和非线性部分

神经网络的线性部分非线性部分是其构成中的两个核心元素,它们共同决定了模型的能力和行为。让我们分别看一下这两部分:

1. 线性部分

线性部分通常是指神经网络中的加权和操作。这部分可以用以下形式表示:

z = W \\cdot x + b

  • W 是权重矩阵,x 是输入向量,b 是偏置项。
  • 这个表达式是线性的,因为它是关于输入 x 的线性组合。线性意味着输出是输入的简单加权和变化,没有复杂的弯曲或转折。

在这种线性关系中,如果输入发生小的变化,输出也会有相应的比例变化。这部分的特性是非常简单的,它没有能力去捕捉复杂的数据模式或特征。因此,单靠线性结构的神经网络是无法处理复杂任务的。

2. 非线性部分

非线性部分是通过激活函数引入的。常见的激活函数包括 ReLU(修正线性单元),Sigmoid 和 Tanh 等。以 ReLU 为例,它的定义是:

f(z) = \\max(0, z)

  • 这个函数是非线性 的,因为它改变了输入与输出之间的关系:当 z 大于 0 时,输出等于输入;当 z 小于等于 0 时,输出等于 0。
  • 非线性函数使得神经网络能够对输入的变化进行复杂的反应,从而捕捉数据中的非线性模式和复杂关系。

线性与非线性的结合

在神经网络中,线性部分(加权求和)和非线性部分(激活函数)是交替结合的。这种结合使得神经网络可以表达非常复杂的函数关系。单纯的线性层虽然简单,但无法解决复杂问题,而非线性层则赋予了模型更强的表达能力。

为什么线性部分会导致对抗样本脆弱性?

论文指出,神经网络对对抗样本的脆弱性并不完全是由其非线性部分造成的,实际上,线性部分在高维空间中的行为已经足以导致这种脆弱性。在高维空间中,线性函数可以被轻微的扰动很容易地推向不同的分类边界,即便扰动是很小的。这解释了为什么生成对抗样本不需要高度复杂的非线性,只要存在线性操作,模型就有可能被攻击。

因此,尽管神经网络的非线性部分使它能够解决复杂任务,但在对抗攻击的情况下,线性部分却成了主要的薄弱点。

相关推荐
TG:@yunlaoda360 云老大2 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗2 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
兴趣使然黄小黄5 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭5 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t5 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
说私域6 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序
开利网络6 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节
非著名架构师6 小时前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
巫婆理发2227 小时前
评估指标+数据不匹配+贝叶斯最优误差(分析方差和偏差)+迁移学习+多任务学习+端到端深度学习
深度学习·学习·迁移学习
熙梦数字化7 小时前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车