关联比赛: 2021第二届云原生编程挑战赛2:实现一个柔性集群调度机制
参赛心得
历时快两个月的第二届云原生编程挑战赛结束了,作为第一次参赛的萌新,拿下了28名的成绩,与第一名差了19万分,因为赛制时间太长,加上期间学业有各种事以及国庆摆烂,没能拿到前十。到最终也不知道差到那19万分哪儿了。这里将我们的思路做一个分享。期待top10大佬的分享!
题目解析
题目背景就不再赘述,这里我们直接看测试过程:
测试过程:
- PTS 作为压测请求客户端向 Gateway(Consumer) 发起 HTTP 请求,Gateway(Consumer) 加载用户实现的负载均衡算法选择一个 Provider,Provider 处理请求,返回结果。
- 每个 Provider 的服务能力 (处理请求的速率) 都会动态变化。
- 三个 Provider 的每个 Provider 的处理能力会随机变动 以模拟超售场景
- 三个 Provider 任意一个的处理能力都小于 总请求量
- 三个 Provider 的会有一定比例 的请求处理超时(5000ms)
- 三个 Provider 的每个 Provider 会随机离线 (本次比赛不依赖 Nacos 的健康检查机制,也即是无地址更新通知)
- 评测分为预热和正式评测两部分,预热部分不计算成绩,正式评测部分计算成绩。
- 正式评测阶段,PTS 以固定 RPS 请求数模式向 Gateway 发送请求,1分钟后停止;
- 以 PTS 统计的成功请求数和最大 TPS 作为排名依据。成功请求数越大,排名越靠前。成功数相同的情况下,按照最大 TPS 排名。
解析:
从1可以看出,我们要实现的是Gateway层,在Gateway层实现负载均衡算法。
从2可以看出,我们需要动态维护Provider在一段时间内的信息,并且在这个基础上进行预测。
从3可以看出,我们不能给每个Provider的权重设置为一定。需要动态更新。
从4可以看出,需要给三个Provider负载均衡,以吃下更大的请求量。
从5可以看出,必须处理超时的请求,否则会大幅影响成绩。
对于第6点,我们设计了离线检测,但是对我们的成绩并没有提升。
从7可以看出,我们可以利用预热时间,获取一些有用的信息,设置为参数,然后进入下一个节点。
8、9是成绩评测机制。成功的请求越多,成绩越高。
解题思路
针对以上信息,我们设计了以下策略:
快速失败策略
作用:请求在多久没有完成之后(设这个时间为t)就认为其失败,不再等待返回信息,然后进行重试,可以大幅增加请求处理的数量(测试中有很多执行时间为5000ms的消息干扰,不加快速失败策略只有几万分)。
我们进行了以下尝试:
1、基于历史日志进行一元线性回归预测t值(已失效)。
2、线上基于队列进行一元线性回归预测t值(效果不好)。
3、线上利用近期请求的平均执行时间预测t值(效果最好)。
在A榜阶段,我们解析了日志,然后发现请求量和请求时间是一个线性的关系。处理的步骤如下图所示:
图1 数据处理前
图2 数据处理后
然后对这个数据进行一元回归分析:
图3 一元回归预测
最终将一元回归得出的方程带入超时时间,通过当前的并发量和方程预测请求应该在多长时间内结束,然后将这个时间放宽作为我们的超时时间,这个策略在一段时间内让我们得成绩有所上升。
但是好景不长,没过多久出题方改了评测机制,三个provider出现性能大幅差异以及不再线性,加上后面还会不提供日志,于是我们舍弃了这个思路。
图4-6 改了评测机制后的一元回归
于是我们对每个Provider维护一个队列,队列中存放一个对象,对象包含最近0.1ms的请求的耗时,当前的并发数等信息。然后利用这个队列中的信息进行预测:
1.线上一元线性回归预测
将一元回归的代码整合进代码中,每来一条请求,就利用队列中的近100条信息进行一元回归预测,然后再加上一点时间,从微分的思想上来说,这样也是可以得到一个较好的预测的,但是耗时太长,导致成功的请求数反而有所下降。
2.平均时间预测
我们计算出当前维护的队列中所有的请求的平均耗时,然后将其加上一点点,作为预测的超时时间,作为我们的最终策略。
负载均衡策略
负载均衡策略我们几乎尝试了所有的负载算法,以及自己尝试了很多负载均衡算法。比如:
定义:
weight : 计算中的生产者的权重
originWeight :计算前生产者的权重,每次分发前更新一次(因为测评机制3):min = 10 , middle = 15 , max = 20
totalWeight : 三个生产者的总权重
P : 选中概率
memory : 剩余内存
CPU : 剩余CPU占比
avgTime : 最近0.1ms中的消息的平均处理时间
select : 最终选中的处理请求的生产者
active : 当前活跃数
算法:
1.加权轮询算法
weight = originWeight * memory * CPU * (-Math.log (avgTime) + 9)
P(select) = P(weight / totalWeight)
2.最小连接数算法(最优)
if (count (min(active)) == 1) select = min(active)
else select = Max(weight) in Min(active)
3.加权最小连接数算法
weight = originWeight * memory * cpu * (-Math.log(avgTime) + 9)
select = Min (weight / active)
4.最大空余线程数比例算法
Select = Max((maxActive -- active) / maxActive )
5.最大空余线程数算法
Select = Max(maxActive -- active)
最终最优的算法是最小连接数算法,我们在使用最小连接数算法前进行了一个判断,如果该provider已经被限流,则不参与本次选举。
限流策略
不限流的话性能比较差的provider会直接被压垮,并且有很多的5000ms的超时请求,所以必须在provider端实现限流。实现的限流类似于限流算法中的计数器算法,就是定义一个最大线程数,定义一个超时时间timeout以及当前活跃的线程数active,当active小于等于max时就不处理正常执行,大于max时等待timeout长的时间,等待里面的请求自动超时,在这期间如果有请求结束,则唤醒一个新请求,如果在这段时间里有请求没有结束,就让正在活跃的请求全部失败。
服务离线策略(未生效)
在官方的赛题说明中,提到三个生产者会随机离线,然后就设计了这个离线策略,但是奇怪的是并没有生效。策略是:如果一个服务上一次成功执行请求的时间距离现在特别长,就让其在一段时间之内不再执行,过一段时间之后再给它恢复正常。如上图所示,如果一个服务上一次请求的时间距离现在很近(比如为500ms),那么就判定该服务正常,让其正常执行,如果一个服务上一次请求成功的时间离现在大于500ms,就将它上一次请求成功的时间设置为当前时间往后的第500ms,在这之后500ms内,服务这个服务不再参加选举。这个离线的时间我们也做过一版动态的,比如第一次离线就让其离线50ms,第二次就让其离线100ms,第三次让其离线150ms。但是无论怎么调整判断离线时间和离线时间的数值,都对成绩没有提升效果。
图7 服务离线策略
利用预热时间探测最佳并发量
在测试时有一分钟的预热时间,我们利用其1分钟探测出服务的最佳并发量。因为服务性能可能会动态变动,所以我们这里可能做得不是很好,期待大佬的帖子。
探测的思路是:
定义变量:
每秒钟成功的请求数successCountPerSecond
当前限流的并发数: max
每秒钟最大成功请求数: bestSuccessCountPerSecond
最佳并发量: bestConcurrency
我们在一个定时器中执行以下代码:
图8 探测最佳并发量
最后快到1分钟时,不再执行这段代码,并将限流的数量设置为探测出来的max。
历时快两个月,最终成绩28名,明年继续努力!
仓库地址:
https://gitee.com/bestanswer/pullbased-cluster
查看更多内容,欢迎访问天池技术圈官方地址: 参赛心得和思路分享:2021第二届云原生编程挑战赛2: 实现一个柔性集群调度机制_天池技术圈-阿里云天池