【项目一】基于pytest的自动化测试框架———解读requests模块

解读python的requests模块

这篇blog主要聚焦如何使用 Python 中的 requests 模块来实现接口自动化测试。下面我介绍一下 requests 的常用方法、数据传输方式以及应对实际项目中的常见问题。

什么是requests模块

requests 是 Python 中广泛使用的库,用于简化 HTTP 请求的发送和响应处理。

安装通过pip install requests

基础用法

  1. 发送post请求

在接口测试中,post请求经常用于发送数据。假设要测试一个登录接口,需要传递用户名和密码作为请求参数。

Python 复制代码
import requests

# 设置请求的 URL 和参数
url = 'http://127.0.0.1:8787/login'
headers = {'Content-Type': 'application/x-www-form-urlencoded'}
data = {'username': 'testuser', 'password': 'testpass'}

# 发起 POST 请求
response = requests.post(url, headers=headers, data=data)

# 查看响应状态码和内容
print(response.status_code)  # 200 表示请求成功
print(response.text)  # 返回服务器响应的文本内容
  1. GET请求与参数传递

GET请求常用于获取服务器资源,如获取商品列表。我们可以传递查询参数,服务器根据参数返回特定的数据。

Python 复制代码
url = 'http://127.0.0.1:8787/products'
params = {'category': 'electronics'}

response = requests.get(url, params=params)

# 输出返回的 JSON 数据
print(response.json())

GET与POST的区别

在实际项目中,选择post还是get取决于数据传递的需求:

get:用于从服务器获取数据,查询参数通过 url 传递,适用于获取资源。

post:用于提交数据到服务器,参数在请求体中,适用于数据提交或修改。

数据传递格式

  1. 表单提交与JSON数据

post请求的数据传输方式主要有两种:表单数据和json数据。

  • 表单提交

    data = {'username': 'testuser', 'password': 'testpass'}
    response = requests.post(url, data=data)

  • JSON提交:

    json_data = {'username': 'testuser', 'password': 'testpass'}
    response = requests.post(url, json=json_data)

不同的接口通常有特定的数据格式要求,测试时需依据接口文档确定数据传输方式。

会话管理与持久性连接

在一些需要多次请求的场景下,使用会话对象 Session 可以管理持久性连接,避免重复登录等繁琐操作。尤其是涉及用户登录、会话保持的场景,Session 的使用至关重要。

Python 复制代码
# 创建会话对象
session = requests.Session()

# 使用会话对象进行登录
login_url = 'http://127.0.0.1:8787/login'
session.post(login_url, data={'username': 'testuser', 'password': 'testpass'})

# 登录后,访问受保护的资源
protected_url = 'http://127.0.0.1:8787/protected'
response = session.get(protected_url)

print(response.text)

处理相应结果

除了接口的响应状态码,还需要处理接口返回的数据格式,requests支持多种返回格式:

文本类型:print(response.text)

解析JSON相应:print(response.json())

获取二进制内容,如图片或文件:print(response.content)

应对HTTPS证书验证

在测试HTTPS接口时,可能会遇到证书验证错误,可以通过一下方式禁用证书验证:

Python 复制代码
response = requests.get(url, verify=False)

错误处理与异常捕获

requests提供了强大的异常处理机制,在测试过程中可以捕获网络错误或者超时的问题

Python 复制代码
try:
    response = requests.get(url, timeout=5)
    response.raise_for_status()  # 检查请求是否成功
except requests.exceptions.HTTPError as http_err:
    print(f'HTTP error occurred: {http_err}')
except requests.exceptions.RequestException as err:
    print(f'Other error occurred: {err}')
相关推荐
测试19981 小时前
软件测试之压力测试总结
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·压力测试
李昊哲小课1 小时前
销售数据可视化分析项目
python·信息可视化·数据分析·matplotlib·数据可视化·seaborn
烛阴2 小时前
带参数的Python装饰器原来这么简单,5分钟彻底掌握!
前端·python
全干engineer2 小时前
Flask 入门教程:用 Python 快速搭建你的第一个 Web 应用
后端·python·flask·web
nightunderblackcat2 小时前
新手向:Python网络编程,搭建简易HTTP服务器
网络·python·http
李昊哲小课2 小时前
pandas销售数据分析
人工智能·python·数据挖掘·数据分析·pandas
C嘎嘎嵌入式开发3 小时前
python之set详谈
开发语言·python
之歆3 小时前
Python-正则表达式-信息提取-滑动窗口-数据分发-文件加载及分析器-浏览器分析-学习笔记
python·学习·正则表达式
往日情怀酿做酒 V17639296383 小时前
pytorch的介绍以及张量的创建
人工智能·pytorch·python
豌豆花下猫4 小时前
Python 潮流周刊#110:JIT 编译器两年回顾,AI 智能体工具大爆发(摘要)
后端·python·ai