带参数的Python装饰器原来这么简单,5分钟彻底掌握!

带参数的装饰器(三层嵌套结构)

python 复制代码
def repeat_execution(n_times):
    # 第一层:接收装饰器参数
    def decorator(func):
        # 第二层:接收被装饰函数
        def wrapper(*args, **kwargs):
            # 第三层:执行装饰逻辑
            for _ in range(n_times):
                result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@repeat_execution(n_times=3)
def say_hello(name):
    print(f"Hello, {name}!")

say_hello("Alice")

输出:

复制代码
Hello, Alice!
Hello, Alice!
Hello, Alice!

深度解析:装饰器参数如何传递

  1. @repeat_execution(n_times=3) 首先执行
    • 调用repeat_execution(3)返回decorator函数
  2. 接着执行@decorator
    • say_hello作为参数传递给decorator
  3. 最终生成装饰后的wrapper函数

带状态记录的装饰器

python 复制代码
def log_performance(metric_name):
    def decorator(func):
        func.call_count = 0  # 添加函数属性
        
        def wrapper(*args, **kwargs):
            func.call_count += 1
            print(f"[{metric_name}] 执行 #{func.call_count}")
            return func(*args, **kwargs)
        return wrapper
    return decorator

@log_performance("用户验证")
def authenticate(user):
    return user == "admin"

print(authenticate("guest"))
print(authenticate("admin"))
print(f"验证函数调用次数: {authenticate.call_count}")

输出:

ini 复制代码
[用户验证] 执行 #1
False
[用户验证] 执行 #2
True
验证函数调用次数: 2

类实现的装饰器参数

python 复制代码
class TimeoutRetry:
    def __init__(self, retries=3, delay=1):
        self.retries = retries
        self.delay = delay
    
    def __call__(self, func):
        import time
        def wrapper(*args, **kwargs):
            for attempt in range(self.retries):
                try:
                    return func(*args, **kwargs)
                except TimeoutError:
                    print(f"超时重试中... ({attempt+1}/{self.retries})")
                    time.sleep(self.delay)
            raise Exception("所有重试均失败")
        return wrapper

@TimeoutRetry(retries=2, delay=0.5)
def fetch_data():
    # 模拟网络请求
    raise TimeoutError("连接超时")

fetch_data()  # 将触发重试机制

装饰器参数的最佳实践

  1. 命名规范 :使用描述性的参数名(如max_retries而非n

  2. 参数验证 :在装饰器最外层验证参数有效性

    python 复制代码
    def validate_params(max_time):
        if max_time <= 0:
            raise ValueError("最大时间必须为正数")
  3. 保留元数据 :使用@functools.wraps保持原始函数属性

    python 复制代码
    from functools import wraps
    
    def debug_decorator(level):
        def decorator(func):
            @wraps(func)  # 保留原始函数信息
            def wrapper(*args, **kwargs):
                if level > 1:
                    print(f"[DEBUG] 调用 {func.__name__}")
                return func(*args, **kwargs)
            return wrapper
        return decorator
相关推荐
m0_7369191011 分钟前
用Pandas处理时间序列数据(Time Series)
jvm·数据库·python
getapi13 分钟前
实时音视频传输与屏幕共享(投屏)
python
大橙子额23 分钟前
【解决报错】Cannot assign to read only property ‘exports‘ of object ‘#<Object>‘
前端·javascript·vue.js
java干货42 分钟前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
机器懒得学习44 分钟前
智能股票分析系统
python·深度学习·金融
毕设源码-郭学长44 分钟前
【开题答辩全过程】以 基于python的二手房数据分析与可视化为例,包含答辩的问题和答案
开发语言·python·数据分析
SR_shuiyunjian1 小时前
Python第三次作业
python
vx_biyesheji00011 小时前
豆瓣电影推荐系统 | Python Django 协同过滤 Echarts可视化 深度学习 大数据 毕业设计源码
大数据·爬虫·python·深度学习·django·毕业设计·echarts
鸽芷咕1 小时前
DrissionPage 成 CANN 仓库爆款自动化工具:背后原因何在?
运维·python·自动化·cann
爱学习的阿磊1 小时前
使用Fabric自动化你的部署流程
jvm·数据库·python