python画图|3D参数化图形输出

前面已经学习了基本的3D作图,具体链接如下:

基础教程:python画图|3D图基础教程-CSDN博客

直方图教程:python画图|3D直方图基础教程-CSDN博客

垂线标记教程:python画图|3D垂线标记-CSDN博客

3D surface教程:python画图|3D surface基础教程-CSDN博客

在此基础上,今天尝试学习参数化图形输出教程。

【1】官网教程

首先依然是进入官网学习:

https://matplotlib.org/stable/gallery/mplot3d/lines3d.html

官网示例给出了漂亮的参数化曲线结果,下述为对官网代码的解读。

【2】代码解读

首先引入numpy和matplotlib。

复制代码
import matplotlib.pyplot as plt #引入matplotlib模块画图
import numpy as np #引入numpy模块做数学计算

然后快速定义了要画3D图:

复制代码
ax = plt.figure().add_subplot(projection='3d') #定义画图,指明为3D图

画图应当有数据,因此定义了参数和各个变量:

复制代码
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) #定义参数变量theta
z = np.linspace(-2, 2, 100) #定义参数变量z
r = z**2 + 1 #定义因变量r
x = r * np.sin(theta) #定义自变量x
y = r * np.cos(theta) #定义自变量y

上述代码中,theta为最初的参数;但这里同样把Z也取成了参数。

然后,定义了按照x、y和z的方式输出图形:

复制代码
ax.plot(x, y, z, label='parametric curve') #定义输出图形

最后对图形属性做了规定:

复制代码
ax.plot(x, y, z, label='parametric curve') #定义输出图形
ax.legend() #定义输出标签
plt.show() #输出图形

完整的代码注解和输出图形为:

python 复制代码
import matplotlib.pyplot as plt #引入matplotlib模块画图
import numpy as np #引入numpy模块做数学计算

ax = plt.figure().add_subplot(projection='3d') #定义画图,指明为3D图

# Prepare arrays x, y, z
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) #定义参数变量theta
z = np.linspace(-2, 2, 100) #定义参数变量z
r = z**2 + 1 #定义因变量r
x = r * np.sin(theta) #定义自变量x
y = r * np.cos(theta) #定义自变量y

ax.plot(x, y, z, label='parametric curve') #定义输出图形
ax.legend() #定义输出标签
plt.show() #输出图形

++图1++

【3】代码修改

在代码修改前,我们先在plt.show()前加一行代码用以输出轴标签:

复制代码
ax.set(xlabel='x',ylabel='y',zlabel='z') #要求输出坐标轴标签

【3.1】交换r和Z

官网教程将Z定义为参数,现在尝试交换r和Z,Z作为因变量,改后代码为:

复制代码
# Prepare arrays x, y, z
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) #定义参数变量theta
r = np.linspace(-2, 2, 100) #定义参数变量r
z = r**2 + 1 #定义因变量z
x = z * np.sin(theta) #定义自变量x
y = z * np.cos(theta) #定义自变量y

此时的输出结果为:

++图2++

可见,新的代码下输出图像已经完全不同。

【3.2】交换x和z

官网教程将plot输出图形时按照xyz的顺序,现在尝试携程zyx的顺序,改后代码为:

复制代码
ax.plot(z, y, x, label='parametric curve') #定义输出图形

输出结果为:

++图3++

由图3和图2对比可见,图形"底座"从xoy平面旋转到了yoz平面。

至此的完整代码为:

python 复制代码
import matplotlib.pyplot as plt #引入matplotlib模块画图
import numpy as np #引入numpy模块做数学计算

ax = plt.figure().add_subplot(projection='3d') #定义画图,指明为3D图

# Prepare arrays x, y, z
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) #定义参数变量theta
r = np.linspace(-2, 2, 100) #定义参数变量r
z = r**2 + 1 #定义因变量z
x = z * np.sin(theta) #定义自变量x
y = z * np.cos(theta) #定义自变量y

ax.plot(z, y, x, label='parametric curve') #定义输出图形
ax.legend() #定义输出标签
ax.set(xlabel='x',ylabel='y',zlabel='z') #要求输出坐标轴标签
plt.show() #输出图形

【4】改写代码

尝试完全修改参数和变量,依然按照xyz的顺序输出,改后代码为:

复制代码
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) #定义参数变量theta
x = theta #定义自变量x
y =np.cos(theta) #定义自变量y
z =np.sin(theta) #定义自变量z


ax.plot(x, y, z, label='parametric curve') #定义输出图形

输出图形为:

++图4++

图4展示了新的输出图形。

未做对比,继续修改代码,设定z=0:

复制代码
z =0 #定义自变量z

输出结果为:

++图5++

可见,在xoy,输出了 y =np.cos(x)的正弦函数图像。

【5】总结

学习了3D参数化图形输出,尝试修改了参数和函数,均获得了期待的3D图形。

相关推荐
爱学测试的雨果3 分钟前
收藏!软件测试面试题
开发语言·面试·职场和发展
AI小云17 分钟前
【数据操作与可视化】Pandas数据处理-其他操作
python·pandas
大佬,救命!!!24 分钟前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
安然无虞29 分钟前
JMeter性能测试工具·下
开发语言·测试工具·jmeter
4***R24031 分钟前
C++在音视频处理中的库
开发语言·c++·音视频
embrace991 小时前
【C语言学习】结构体详解
android·c语言·开发语言·数据结构·学习·算法·青少年编程
无心水1 小时前
【Python实战进阶】4、Python字典与集合深度解析
开发语言·人工智能·python·python字典·python集合·python实战进阶·python工业化实战进阶
上班职业摸鱼人1 小时前
python文件中导入另外一个模块这个模块
python
永远是夏天1 小时前
Python面向对象编程(OOP)全教程:从入门到实战(附案例)
python
代码不停1 小时前
Java单链表和哈希表题目练习
java·开发语言·散列表