AutoGen主打的是多智能体,对话和写代码,但是教程方面没有langchain丰富,我这里抛砖引玉提供一个autogen接入开源function calling模型的教程,我这里使用的开源repo是:https://github.com/SalesforceAIResearch/xLAM
开源模型是:https://huggingface.co/Salesforce/xLAM-7b-fc-r
1b的模型效果有点差,推荐使用7b的模型。首先使用vllm运行:
vllm serve Salesforce/xLAM-8x7b-r --host 0.0.0.0 --port 8000 --tensor-parallel-size 4
然后autogen代码示例:
import re
import json
import random
import time
from typing import Literal
from pydantic import BaseModel, Field
from typing_extensions import Annotated
import autogen
from autogen.cache import Cache
from openai.types.completion import Completion
import openai
from xLAM.client import xLAMChatCompletion, xLAMConfig
from openai.types.chat import ChatCompletion, ChatCompletionMessageToolCall
from openai.types.chat.chat_completion import ChatCompletionMessage, Choice
from openai.types.completion_usage import CompletionUsage
local_llm_config={
"config_list": [
{
"model": "/<your_path>/xLAM-7b-fc-r", # Same as in vLLM command
"api_key": "NotRequired", # Not needed
"model_client_cls": "CustomModelClient",
"base_url": "http://localhost:8000/v1", # Your vLLM URL, with '/v1' added
"price": [0, 0],
}
],
"cache_seed": None # Turns off caching, useful for testing different models
}
TOOL_ENABLED = True
class CustomModelClient:
def __init__(self, config, **kwargs):
print(f"CustomModelClient config: {config}")
gen_config_params = config.get("params", {})
self.max_length = gen_config_params.get("max_length", 256)
print(f"Loaded model {config['model']}")
config = xLAMConfig(base_url=config["base_url"], model=config['model'])
self.llm = xLAMChatCompletion.from_config(config)
def create(self, params):
if params.get("stream", False) and "messages" in params:
raise NotImplementedError("Local models do not support streaming.")
else:
if "tools" in params:
tools=[item['function'] for item in params["tools"]]
response = self.llm.completion(params["messages"], tools=tools)
if len(response['choices'][0]['message']['tool_calls'])>0:
finish_reason='tool_calls'
tool_results = response['choices'][0]['message']['tool_calls']
if isinstance(tool_results, list) and isinstance(tool_results[0], list):
tool_results = tool_results[0]
tool_calls = []
try:
for tool_call in tool_results:
tool_calls.append(
ChatCompletionMessageToolCall(
id=str(random.randint(0,2500)),
function={"name": tool_call['name'], "arguments": json.dumps(tool_call["arguments"])},
type="function"
)
)
except Exception as e:
print("Tool parse error: {tool_results}")
tool_calls=None
finish_reason='stop'
else:
finish_reason='stop'
tool_calls = None
message = ChatCompletionMessage(
role="assistant",
content=response['choices'][0]['message']['content'],
function_call=None,
tool_calls=tool_calls,
)
choices = [Choice(finish_reason=finish_reason, index=0, message=message)]
response_oai = ChatCompletion(id=str(random.randint(0,25000)),
model=params["model"],
created=int(time.time()),
object="chat.completion",
choices=choices,
usage=CompletionUsage(
prompt_tokens=0,
completion_tokens=0,
total_tokens=0
),
cost=0.0,
)
return response_oai
def message_retrieval(self, response):
"""Retrieve the messages from the response."""
choices = response.choices
if isinstance(response, Completion):
return [choice.text for choice in choices]
if TOOL_ENABLED:
return [ # type: ignore [return-value]
(
choice.message # type: ignore [union-attr]
if choice.message.function_call is not None or choice.message.tool_calls is not None # type: ignore [union-attr]
else choice.message.content
) # type: ignore [union-attr]
for choice in choices
]
else:
return [ # type: ignore [return-value]
choice.message if choice.message.function_call is not None else choice.message.content # type: ignore [union-attr]
for choice in choices
]
def cost(self, response) -> float:
"""Calculate the cost of the response."""
response.cost = 0
return 0
@staticmethod
def get_usage(response):
# returns a dict of prompt_tokens, completion_tokens, total_tokens, cost, model
# if usage needs to be tracked, else None
return {
"prompt_tokens": response.usage.prompt_tokens if response.usage is not None else 0,
"completion_tokens": response.usage.completion_tokens if response.usage is not None else 0,
"total_tokens": (
response.usage.prompt_tokens + response.usage.completion_tokens if response.usage is not None else 0
),
"cost": response.cost if hasattr(response, "cost") else 0,
"model": response.model,
}
chatbot = autogen.AssistantAgent(
name="chatbot",
system_message="For currency exchange tasks, only use the functions you have been provided with. Reply TERMINATE when the task is done.",
llm_config=local_llm_config,
)
# create a UserProxyAgent instance named "user_proxy"
user_proxy = autogen.UserProxyAgent(
name="user_proxy",
is_termination_msg=lambda x: x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE"),
human_input_mode="NEVER",
max_consecutive_auto_reply=5,
)
CurrencySymbol = Literal["USD", "EUR"]
def exchange_rate(base_currency: CurrencySymbol, quote_currency: CurrencySymbol) -> float:
if base_currency == quote_currency:
return 1.0
elif base_currency == "USD" and quote_currency == "EUR":
return 1 / 1.1
elif base_currency == "EUR" and quote_currency == "USD":
return 1.1
else:
raise ValueError(f"Unknown currencies {base_currency}, {quote_currency}")
@user_proxy.register_for_execution()
@chatbot.register_for_llm(description="Currency exchange calculator.")
def currency_calculator(
base_amount: Annotated[float, "Amount of currency in base_currency"],
base_currency: Annotated[CurrencySymbol, "Base currency"] = "USD",
quote_currency: Annotated[CurrencySymbol, "Quote currency"] = "EUR",
) -> str:
quote_amount = exchange_rate(base_currency, quote_currency) * base_amount
return f"{quote_amount} {quote_currency}"
print(chatbot.llm_config["tools"])
chatbot.register_model_client(model_client_cls=CustomModelClient)
query = "How much is 123.45 USD in EUR?"
# query = "What's the weather like in New York in fahrenheit?"
res = user_proxy.initiate_chat(
chatbot, message=query,
max_round=5,
)
print("Chat history:", res.chat_history)
运行示例结果:
user_proxy (to chatbot):
How much is 123.45 USD in EUR?
--------------------------------------------------------------------------------
chatbot (to user_proxy):
***** Suggested tool call (507): currency_calculator *****
Arguments:
{"base_amount": 123.45, "base_currency": "USD", "quote_currency": "EUR"}
**********************************************************
--------------------------------------------------------------------------------
>>>>>>>> EXECUTING FUNCTION currency_calculator...
user_proxy (to chatbot):
user_proxy (to chatbot):
***** Response from calling tool (507) *****
112.22727272727272 EUR
********************************************
--------------------------------------------------------------------------------
chatbot (to user_proxy):
The currency calculator returned 112.23 EUR.
--------------------------------------------------------------------------------
user_proxy (to chatbot):