SQLite的入门级项目学习记录(四)

性能评估和测试

规划项目

**1、框架选择:**前端交互和线程控制用pyside,SQLite作为数据库支持。

**2、预估数据量:**每秒10个数据,每个月约26000000(26M)条。

3、压力测试: 首先用python脚本创建一个数据库,数据库中只有一个表,表中只有一列,共有26M条数据,每个数据的内容是当前系统时间的字符串,str(datetime.now()),这样可以大致模拟一个月的数据量。然后,用脚本操作数据库,增加新的数据条目,测试如果每个月生成数据库文件,是否能满足系统的速度要求(每秒10个数据)。

运行以下的脚本创建数据库文件:

python 复制代码
import sqlite3
from datetime import datetime


def store_data(conn, cursor, data):
    try:
        cursor.execute('BEGIN TRANSACTION')
        cursor.executemany('INSERT INTO measurements (data) VALUES (?)', data)
        conn.commit()
    except Exception as e:
        print(f"An error occurred: {e}")


# 创建数据库连接和游标
db_file = 'createDatas.db'
conn = sqlite3.connect(db_file)
cursor = conn.cursor()

# 创建表
cursor.execute('''
    CREATE TABLE IF NOT EXISTS measurements (
        data TEXT NOT NULL
    )
''')

conn.commit()

# 存储数据
j = 0
x = 0
data = []
while x < 26000000:
    while j < 10000:
        data.append((str(datetime.now()),))
        j += 1
    store_data(conn, cursor, data)
    cursor.execute('SELECT COUNT(*) FROM measurements')
    x = cursor.fetchone()[0]

    j = 0
    data = []
    print(x)
# 关闭连接和游标
cursor.close()
conn.close()

压力测试:

python 复制代码
import sqlite3
from datetime import datetime
from time import time


def store_data(conn, cursor, data):
    try:
        cursor.execute('BEGIN TRANSACTION')
        cursor.executemany('INSERT INTO measurements (data) VALUES (?)', data)
        conn.commit()
    except Exception as e:
        print(f"An error occurred: {e}")


# 创建数据库连接和游标
db_file = 'createDatas.db'
conn = sqlite3.connect(db_file)
cursor = conn.cursor()
x = 0
j = 0
# 创建一个100个元素的数据组
data = []
while j < 100:
    data.append((str(datetime.now()),))
    j += 1
while x < 100:
    time1 = time()
    store_data(conn, cursor, data)
    time2 = time()
    print(time2 - time1)
    x += 1
# 关闭连接和游标
cursor.close()
conn.close()

运行结果:

python 复制代码
0.03693747520446777
0.036476850509643555
0.03375363349914551
0.03529238700866699
0.03457474708557129
0.03527641296386719
0.03363299369812012
0.03394293785095215
0.03500247001647949
0.03366684913635254
0.03717041015625
0.03408193588256836
0.035376787185668945
0.13425254821777344
0.03524899482727051
0.034047603607177734

看得出,即使是拥有2600W条数据的表中增加100条数据,耗时也仅为30ms左右。

然后,我将脚本修改一下,把每次写入的条数改为10和1000,耗时变化不大。

再将表的起始条数改为100条测试,耗时变化也不大。

这也就可以得出结论,本项目,每个月量的数据库,SQLite是完全可以满足写入速度要求的(即使每秒写一次也有足够的裕量)。

相关推荐
阿阳微客2 小时前
Steam 搬砖项目深度拆解:从抵触到真香的转型之路
前端·笔记·学习·游戏
Chef_Chen6 小时前
从0开始学习R语言--Day18--分类变量关联性检验
学习
键盘敲没电7 小时前
【IOS】GCD学习
学习·ios·objective-c·xcode
海的诗篇_7 小时前
前端开发面试题总结-JavaScript篇(一)
开发语言·前端·javascript·学习·面试
AgilityBaby7 小时前
UE5 2D角色PaperZD插件动画状态机学习笔记
笔记·学习·ue5
AgilityBaby7 小时前
UE5 创建2D角色帧动画学习笔记
笔记·学习·ue5
武昌库里写JAVA9 小时前
iview Switch Tabs TabPane 使用提示Maximum call stack size exceeded堆栈溢出
java·开发语言·spring boot·学习·课程设计
一弓虽10 小时前
git 学习
git·学习
Moonnnn.12 小时前
【单片机期末】串行口循环缓冲区发送
笔记·单片机·嵌入式硬件·学习
viperrrrrrrrrr713 小时前
大数据学习(131)-Hive数据分析函数总结
大数据·hive·学习