Kafka基础概念

1.kafka概念

Producer:生产消息实例

Broker:管理和存储消息服务端服务器

Consumer:消费消息的实例

Record:kafka系统中的消息

2.kafka概念-主题

topic:主题,消息的类别

主要用于区别一个broker(服务器)中的不同消息的类别,方便于Consumer去订阅不同的主题,消费对应主题的消息

3.kafka概念-消费者和分区

当生产者生产消息数量过多,单机消费者无法满足消费需求,但是消费多机部署会产生重复消费消息。

原因:每个consumer无法区分消费了哪些消息。

解决方案:将topic做更细粒度的划分,叫做Partition,让每个partition只让一个消费者消费,那么就不会造成多个消费者消费同一条消息的情况了。

Partition:实际消息存储的地方,有序的队列。

Offset:偏移量,Record在Patition中的位置。

ConsumerGroup:共同处理消息的一组消费者实例。

但是在Partition之后,还是会造成消息重复消费的问题:

kafka重复消费消息的原因:已经消费了数据,但是offset并没有提交

kafka消息重复消费很大一部分原因是在于发生了再均衡

1)消费者宕机,重启等,导致消息已经消费,但是没有提交offset,那么offset就还是消息消费之前的offset,下一次消费者来消费,就会消费上次已经消费的消息。

2)消费者使用自动提交offset,但当还没有提交的时候,有新的消费者加入或移除,发生了rebalance。再次消费的时候,消费者会根据提交的偏移量来,于是重复消费了消息。

3)消息处理耗时,或者消费者拉取的消息量太多,处理耗时,超过了max.poll.interval.ms的配置时间,导致认为当前消费者已经死掉,触发了rebalance。

Rebalance:Broker为Consumer重新分配Partition的一个过程。

4.kafka概念-位点

场景:随着时间的增加,消息占用了很多磁盘空间。

解决方案:消息总量达到了设置大小,或者设置时间,就删除这些消息。

在Partition中有三个概念:

earlistOffset:第一条有效的消息的Offset,也就是消费者开始消费这个Partition时的第一条消息

GroupOffset:ConsumerGroup中的对应的消费者所消费到的Offset。

latestOffset:最后一条数据的Offset

5.kafka概念-Replication&Cluster

场景:机器故障,该机器上的消息丢失

解决方案:部署多台Broker,消息根据partition在不同机器之间进行备份

集群:一组broker组成集群

Replication:消息的备份

6.kafka拓扑模型

相关推荐
安防视频中间件/视频资源汇聚平台39 分钟前
SVMSPro分布式综合安防管理平台--地图赋能智慧指挥调度新高度
分布式
SYC_MORE2 小时前
vLLM实战:多机多卡大模型分布式推理部署全流程指南
分布式
程序猿阿伟6 小时前
《解锁分布式软总线:构建智能设备统一管理平台》
分布式
程序猿阿伟6 小时前
《从底层逻辑剖析:分布式软总线与传统计算机硬件总线的深度对话》
分布式
工业甲酰苯胺6 小时前
zk基础—zk实现分布式功能
分布式
hi星尘8 小时前
深入理解Apache Kafka
分布式·kafka·apache
IT成长日记8 小时前
【Kafka基础】监控与维护:分区健康检查,确保数据高可用
分布式·kafka·健康检查·监控与维护
敏君宝爸11 小时前
kafka 配置SASL认证
分布式·kafka
斯普信云原生组11 小时前
kafka消费延迟
分布式·kafka
见未见过的风景11 小时前
使用 Redis + Redisson 分布式锁来生成全局唯一、线程安全的带日期前缀的流水号的完整实现。
数据库·redis·分布式