基于yolov5滑块识别破解(二)

通过上一篇文章基于yolov5滑块识别破解(一)-CSDN博客,我们已经完成了yolov5的部署和训练,接下来我们将对源码进行改动,来实现滑块的自动滑动破解。

1.获取坐标

修改detect中for循环的内容,获取目标的左上角的x位置,可以理解为阴影快的位置。之后的代码都可以删除掉了。

修改末尾函数,返回x_location

2.浏览器登陆

这里以豆瓣登陆为例,使用DrissionPage操作浏览器,自动输入账号密码来到登陆界面的滑块确认操作:

代码如下:

复制代码
page = ChromiumPage()

# 跳转到登录页面
page.get('https://accounts.douban.com/passport/login')

# 点击账号密码登陆
page.ele('xpath://*[@id="account"]/div[2]/div[2]/div/div[1]/ul[1]/li[2]').click()

# 输入账号和密码
page.ele('xpath://*[@id="username"]').input('17263498234')
page.ele('xpath://*[@id="password"]').input('17263498234')

# 点击登陆
page.ele('xpath://*[@id="account"]/div[2]/div[2]/div/div[2]/div[1]/div[4]/a').click()

3.滑块图片获取

DrissionPage自带了页面截图的效果,我们只需要截取滑块部分即可。坐标获取的办法有很多种,我用的是直接截取整个网页图片,然后在windows画板中去查看坐标。(由于显示器大小的原因,不同的电脑可能滑块页面的像素位置会不同,建议自己截图测量一下)

代码如下:

复制代码
    page.get_screenshot(left_top=(754,294),right_bottom=(1114,664),name='blok.jpg')

left_top=(754,294):滑块部分左上角在整个页面的坐标

right_bottom=(1114,664):滑块部分右下角在整个页面的坐标

运行结果如下:

4.阴影快水平位置获取

再得到图片以后我们就可以调用yolov5去检测阴影快,得到距离目标的水平距离。

5.获取滑块元素

因为滑块元素是在原来的html页面里面又嵌套了一个html结构,直接获取滑块元素是获取不到的,我们需要切换到对应的iframe下,代码如下:

复制代码
# 切换iframe
iframe = page.get_frame('tcaptcha_iframe_dy')

# 获取iframe中的滑块元素
iframe.ele('xpath://*[@id="tcOperation"]/div[6]')

6.滑动滑块

在拿到距离目标的水平位置之后,我们可以滑动滑块去解锁了。由于yolov5返回的目标位置是从图片最左边开始算的,而且滑块的起始位置并不在最左边,所以我们还要减掉滑块的起始位置。

完整代码

复制代码
import shutil
import time
import os
from detect import get_location
from DrissionPage import ChromiumPage

# 用 d 模式创建页面对象(默认模式)
page = ChromiumPage()

def delete_folder(folder_path):
    if os.path.exists(folder_path):
        shutil.rmtree(folder_path)  # 删除文件夹及其内容
        print(f"文件夹 '{folder_path}' 已删除")
    else:
        print(f"文件夹 '{folder_path}' 不存在")

def delete_files_in_directory(directory):
    # 遍历目录中的所有文件
    for filename in os.listdir(directory):
        file_path = os.path.join(directory, filename)
        try:
            # 检查是否是文件,避免删除子文件夹
            if os.path.isfile(file_path):
                os.remove(file_path)
                print(f'已删除文件: {file_path}')
        except Exception as e:
            print(f'删除文件时出错: {file_path}, 错误: {e}')


def action(target):
    # 切换iframe
    iframe = page.get_frame('tcaptcha_iframe_dy')
    print('开始滑动')
    iframe.ele('xpath://*[@id="tcOperation"]/div[6]').drag(target,0,1)
    print('滑动结束')


def login_page():
    # 跳转到登录页面
    page.get('https://accounts.douban.com/passport/login')

    # 点击账号密码登陆
    page.ele('xpath://*[@id="account"]/div[2]/div[2]/div/div[1]/ul[1]/li[2]').click()

    # 输入账号和密码
    page.ele('xpath://*[@id="username"]').input('17263498234')
    page.ele('xpath://*[@id="password"]').input('17263498234')

    # 点击登陆
    page.ele('xpath://*[@id="account"]/div[2]/div[2]/div/div[2]/div[1]/div[4]/a').click()

    # 等待让滑块加载出来
    time.sleep(2)

    # 删除之前的图片
    delete_files_in_directory('./data/images')
    delete_folder('./runs/detect/')

    # 对整页截图并保存
    page.get_screenshot(left_top=(754,294),right_bottom=(1114,664),name='blok.jpg',path='./data/images')

    # 获取当前位置
    location = get_location()

    # 滑动滑块,位置为目标距离减去滑块起始距离
    action(location-40)


if __name__ == '__main__':
    login_page()

结果展示

相关推荐
极智视界42 分钟前
目标检测数据集 - 穿着服饰检测数据集下载
yolo·目标检测·数据集·voc·coco·算法训练·穿着服饰检测数据集
音沐mu.2 小时前
【34】犬类品种数据集(有v5/v8模型)/YOLO犬类品种检测
人工智能·yolo·目标检测·犬类品种数据集·犬类品种检测
辛勤的程序猿3 小时前
改进的mamba核心块—Hybrid SS2D Block(适用于视觉)
人工智能·深度学习·yolo
一勺汤5 小时前
YOLO 双 Backbone 双模态融合:以 LLVIP 数据集为例的红外 - 可见光目标检测实践
yolo·双backbone·yolo 双backbone·双模态·yolo双模态·llvip
零小陈上(shouhou6668889)9 小时前
水稻病害检测(YOLO数据集,多分类,稻瘟病、纹枯病、褐斑病、枯心病、霜霉病、水稻细菌性条纹斑病、稻苞虫)
yolo·分类·数据挖掘
youcans_9 小时前
【跟我学YOLO】Mamba-YOLO-World:YOLO-World与Mamba 融合的开放词汇目标检测
论文阅读·人工智能·yolo·计算机视觉·mamba
牙牙要健康11 小时前
【YOLOv8-Ultralytics】 【目标检测】【v8.3.235版本】 模型专用验证器代码val.py解析
人工智能·yolo·目标检测
F_D_Z1 天前
简明 | Yolo-v3结构理解摘要
深度学习·神经网络·yolo·计算机视觉·resnet
Coding茶水间1 天前
基于深度学习的无人机视角检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉