图标点选,opencv图标匹配,非模型纯算法识别

0x0 前言

github开源地址:github.com/taisuii/Ope...

验证码分析

验证码例子为,数美

我们不难可以发现这几个特征点

  • 图标大小均匀没有拉伸和畸变,只进行了简单的旋转
  • 图标颜色单一且均为红色
解决方案

对于这种图像,我们可以直接使用纯算法识别,思路如下: 提取背景图红色像素部分,把小图标按X轴均匀切割,逐个匹配,或四个线程并发匹配

0x1 识别算法部分

字节流转换为cv2图片

对于网络下载的图片进行转换以便于后续处理

python 复制代码
def cv2_imread_buffer(buffer):
    buffer = io.BytesIO(buffer)
    arr = np.frombuffer(buffer.getvalue(), np.uint8)
    img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
    return img
背景图红色部分提取
python 复制代码
def preprocess_red_image(img):
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    lower_red1 = np.array([0, 120, 70])
    upper_red1 = np.array([10, 255, 255])
    lower_red2 = np.array([170, 120, 70])
    upper_red2 = np.array([180, 255, 255])
    mask1 = cv2.inRange(hsv, lower_red1, upper_red1)
    mask2 = cv2.inRange(hsv, lower_red2, upper_red2)
    mask = cv2.bitwise_or(mask1, mask2)
    result = np.zeros_like(img)
    result[mask > 0] = img[mask > 0]
    return result

提取后效果如下,到这一步,几乎是无脑识别了,剩下的代码就是

识别,匹配出坐标

切割小图标,并把小图标缩放成和背景图上大小差不多的图标 然后旋转360度,每6度匹配一次大图

python 复制代码
def split_image_tag(img, tag_pos):
    x, y = tag_pos
    img_ = img[0:35, y - 37:y]
    return img_
# 多线程识别
def process_tag(tag_pos):

    new_template = split_image_tag(img_2, tag_pos)
    new_size = 75
    new_template = cv2.resize(new_template, (new_size, new_size))

    ocr_infos = []
    angel_size = 6

    for angle in range(-180, 180, angel_size):
        template_ = rotate_image(new_template, angle)
        max_val, max_loc = template_match(template_, img_1)
        ocr_infos.append([angle, max_val, max_loc])

    max_info = max(ocr_infos, key=lambda x: x[1])

    return max_info

with ThreadPoolExecutor() as executor:
    results = list(executor.map(process_tag, [(37, 37), (37, 74), (37, 111), (37, 148)]))

for max_info in results:
    match_tag_list.append(list(max_info[-1]))

return match_tag_list

旋转图片,模板匹配

python 复制代码
# 旋转图片
def rotate_image(template, angle):
    center = (template.shape[1] // 2, template.shape[0] // 2)
    rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)
    rotated_image = cv2.warpAffine(template, rotation_matrix, (template.shape[1], template.shape[0]),
                                   flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
    return rotated_image


# 模板匹配
def template_match(template, img):
    template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY)
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    res = cv2.matchTemplate(img_gray, template_gray, cv2.TM_CCOEFF_NORMED)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
    return max_val, max_loc

识别结果 300+ms,速度非常不错,使用了线程识别 [[132, 71], [181, 20], [88, 29], [221, 97]] 识别耗时:0.3492300510406494

0x3 识别测试

这里仍然采用官网去测试了100次识别,平均速度344ms,成功率84%

相关推荐
Eric.Lee20212 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
小陈phd6 小时前
OpenCV学习——图像融合
opencv·计算机视觉·cv
是十一月末7 小时前
Opencv之对图片的处理和运算
人工智能·python·opencv·计算机视觉
吾名招财10 小时前
python+opencv+棋盘格实现相机标定及相对位姿估计
python·opencv·相机标定
是十一月末11 小时前
Python进阶之opencv图片和视频基本读取关闭
python·opencv·音视频·cv2
泰勒朗斯11 小时前
如何编译Opencv +ffmpeg linux 明明安装了ffmpeg但是opencv就是找不到
linux·opencv·ffmpeg
湫ccc11 小时前
《Opencv》基础操作详解(1)
人工智能·opencv·计算机视觉
gloomyfish11 小时前
【开发实战】QT5+ 工业相机 + OpenCV工作流集成演示
图像处理·深度学习·qt·opencv·计算机视觉
是娜个二叉树!12 小时前
图像处理基础 | 查看两张图像的亮度差异,Y通道相减
图像处理·opencv·计算机视觉
古月居GYH12 小时前
【计算机视觉】opencv-停车位检测原理及代码演示
人工智能·opencv·计算机视觉