OpenCV多种图像哈希算法的实现比较

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

OpenCV提供用于提取图像哈希值的算法,以及在大规模数据集中快速找出最相似图像的方法。

所有函数的命名空间为:cv::img_hash。

支持的算法:

  • 平均哈希(也称为差分哈希)Average hash (also called Different hash)
  • PHash(也称为感知哈希)PHash (also called Perceptual hash)
  • Marr Hildreth 哈希 Marr Hildreth Hash
  • 径向方差哈希 Radial Variance Hash
  • 分块均值哈希(支持模式 0 和 1)Block Mean Hash (modes 0 and 1)
  • 颜色矩哈希 Color Moment Hash
    (这是目前唯一一个对旋转攻击具有抗性的哈希算法(-90~90 度))

你可以通过以下论文和网站了解更多关于图像哈希的内容:

  • "Implementation and benchmarking of perceptual image hash functions" 310
  • "Looks Like It" 145

示例代码

cpp 复制代码
#include "opencv2/core.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/img_hash.hpp"
#include <iostream>

using namespace cv;
using namespace cv::img_hash;
using namespace std;

template < typename T > inline void test_one( const std::string& title, const Mat& a, const Mat& b )
{
    cout << "=== " << title << " ===" << endl;
    TickMeter tick;
    Mat hashA, hashB;
    Ptr< ImgHashBase > func;
    func = T::create();
    tick.reset();
    tick.start();
    func->compute( a, hashA );
    tick.stop();
    cout << "compute1: " << tick.getTimeMilli() << " ms" << endl;
    tick.reset();
    tick.start();
    func->compute( b, hashB );
    tick.stop();
    cout << "compute2: " << tick.getTimeMilli() << " ms" << endl;
    cout << "compare: " << func->compare( hashA, hashB ) << endl << endl;
    ;
}

int main( int argc, char** argv )
{
    ocl::setUseOpenCL( false );
    Mat input  = imread( "/media/dingxin/data/study/OpenCV/sources/images/img1.jpg");
    Mat target = imread( "/media/dingxin/data/study/OpenCV/sources/images/img1.jpg");
    test_one< AverageHash >( "AverageHash", input, target );
    test_one< PHash >( "PHash", input, target );
    test_one< MarrHildrethHash >( "MarrHildrethHash", input, target );
    test_one< RadialVarianceHash >( "RadialVarianceHash", input, target );
    test_one< BlockMeanHash >( "BlockMeanHash", input, target );
    return 0;
}

运行结果

bash 复制代码
=== AverageHash ===
compute1: 22.391 ms
compute2: 0.01228 ms
compare: 0

=== PHash ===
compute1: 0.048038 ms
compute2: 0.028032 ms
compare: 0

=== MarrHildrethHash ===
compute1: 40.5077 ms
compute2: 7.61326 ms
compare: 0

=== RadialVarianceHash ===
compute1: 0.640129 ms
compute2: 0.670026 ms
compare: 1

=== BlockMeanHash ===
compute1: 0.173648 ms
compute2: 0.169781 ms
compare: 0

不同攻击下的性能表现


性能图表

与 PHash 库的速度比较(来自 ukbench 的 100 张图像)

哈希计算图表


哈希比较图表 如你所见,img_hash 模块的哈希计算速度远超 PHash 库。

附注:我没有列出平均哈希、PHash 和颜色矩哈希的比较,因为在 PHash 库中找不到它们。

动机

将有用的图像哈希算法集成到 OpenCV 中,这样我们就无需反复重写这些算法或依赖第三方库(例如 PHash 库)。BOVW(Bag of Visual Words)或相关匹配虽然好且鲁棒,但与图像哈希相比非常慢。如果你需要处理大规模基于内容的图像检索(CBIR)问题,图像哈希是一个更为合理的解决方案。

更多信息

你可以从以下链接了解更多关于 img_hash 模块的信息。这些链接展示了如何从 ukbench 数据集中找到相似图像,并提供了对不同类型攻击(对比度、模糊、噪声(高斯、椒盐)、JPEG 压缩、水印、调整大小)的全面基准测试。

OpenCV 图像哈希模块简介
加速OpenCV图像哈(img_hash)并介绍颜色矩哈希

贡献者

Tham Ngap Wei, thamngapwei@gmail.com

相关推荐
JNU freshman5 分钟前
计算机视觉 之 经典模型汇总
人工智能·计算机视觉
苏苏susuus9 分钟前
NLP:RNN文本生成案例分享
人工智能·rnn·自然语言处理
东方佑28 分钟前
仅27M参数!SamOutVX轻量级语言模型刷新认知,小身材也有大智慧
人工智能·语言模型·自然语言处理
东临碣石8230 分钟前
【AI论文】OmniPart:基于语义解耦与结构连贯性的部件感知三维生成
人工智能
啾啾Fun1 小时前
咨询导览,AI发展趋势
人工智能
向阳逐梦1 小时前
PID控制算法理论学习基础——单级PID控制
人工智能·算法
2zcode1 小时前
基于Matlab多特征融合的可视化指纹识别系统
人工智能·算法·matlab
Liudef061 小时前
三维点云Transformer局部感受野构建:理论、方法与挑战
人工智能·深度学习·transformer
说私域1 小时前
基于定制开发开源AI智能名片与S2B2C商城小程序的旅游日志创新应用研究
人工智能·小程序·旅游
一百天成为python专家2 小时前
python库之jieba 库
开发语言·人工智能·python·深度学习·机器学习·pycharm·python3.11