OpenCV多种图像哈希算法的实现比较

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

OpenCV提供用于提取图像哈希值的算法,以及在大规模数据集中快速找出最相似图像的方法。

所有函数的命名空间为:cv::img_hash。

支持的算法:

  • 平均哈希(也称为差分哈希)Average hash (also called Different hash)
  • PHash(也称为感知哈希)PHash (also called Perceptual hash)
  • Marr Hildreth 哈希 Marr Hildreth Hash
  • 径向方差哈希 Radial Variance Hash
  • 分块均值哈希(支持模式 0 和 1)Block Mean Hash (modes 0 and 1)
  • 颜色矩哈希 Color Moment Hash
    (这是目前唯一一个对旋转攻击具有抗性的哈希算法(-90~90 度))

你可以通过以下论文和网站了解更多关于图像哈希的内容:

  • "Implementation and benchmarking of perceptual image hash functions" 310
  • "Looks Like It" 145

示例代码

cpp 复制代码
#include "opencv2/core.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/img_hash.hpp"
#include <iostream>

using namespace cv;
using namespace cv::img_hash;
using namespace std;

template < typename T > inline void test_one( const std::string& title, const Mat& a, const Mat& b )
{
    cout << "=== " << title << " ===" << endl;
    TickMeter tick;
    Mat hashA, hashB;
    Ptr< ImgHashBase > func;
    func = T::create();
    tick.reset();
    tick.start();
    func->compute( a, hashA );
    tick.stop();
    cout << "compute1: " << tick.getTimeMilli() << " ms" << endl;
    tick.reset();
    tick.start();
    func->compute( b, hashB );
    tick.stop();
    cout << "compute2: " << tick.getTimeMilli() << " ms" << endl;
    cout << "compare: " << func->compare( hashA, hashB ) << endl << endl;
    ;
}

int main( int argc, char** argv )
{
    ocl::setUseOpenCL( false );
    Mat input  = imread( "/media/dingxin/data/study/OpenCV/sources/images/img1.jpg");
    Mat target = imread( "/media/dingxin/data/study/OpenCV/sources/images/img1.jpg");
    test_one< AverageHash >( "AverageHash", input, target );
    test_one< PHash >( "PHash", input, target );
    test_one< MarrHildrethHash >( "MarrHildrethHash", input, target );
    test_one< RadialVarianceHash >( "RadialVarianceHash", input, target );
    test_one< BlockMeanHash >( "BlockMeanHash", input, target );
    return 0;
}

运行结果

bash 复制代码
=== AverageHash ===
compute1: 22.391 ms
compute2: 0.01228 ms
compare: 0

=== PHash ===
compute1: 0.048038 ms
compute2: 0.028032 ms
compare: 0

=== MarrHildrethHash ===
compute1: 40.5077 ms
compute2: 7.61326 ms
compare: 0

=== RadialVarianceHash ===
compute1: 0.640129 ms
compute2: 0.670026 ms
compare: 1

=== BlockMeanHash ===
compute1: 0.173648 ms
compute2: 0.169781 ms
compare: 0

不同攻击下的性能表现


性能图表

与 PHash 库的速度比较(来自 ukbench 的 100 张图像)

哈希计算图表


哈希比较图表 如你所见,img_hash 模块的哈希计算速度远超 PHash 库。

附注:我没有列出平均哈希、PHash 和颜色矩哈希的比较,因为在 PHash 库中找不到它们。

动机

将有用的图像哈希算法集成到 OpenCV 中,这样我们就无需反复重写这些算法或依赖第三方库(例如 PHash 库)。BOVW(Bag of Visual Words)或相关匹配虽然好且鲁棒,但与图像哈希相比非常慢。如果你需要处理大规模基于内容的图像检索(CBIR)问题,图像哈希是一个更为合理的解决方案。

更多信息

你可以从以下链接了解更多关于 img_hash 模块的信息。这些链接展示了如何从 ukbench 数据集中找到相似图像,并提供了对不同类型攻击(对比度、模糊、噪声(高斯、椒盐)、JPEG 压缩、水印、调整大小)的全面基准测试。

OpenCV 图像哈希模块简介
加速OpenCV图像哈(img_hash)并介绍颜色矩哈希

贡献者

Tham Ngap Wei, thamngapwei@gmail.com

相关推荐
用户5191495848454 分钟前
使用Prodfiler优化eBPF编译器性能:零代码修改实现近2倍提升
人工智能·aigc
皮大大富12 分钟前
PD Typec 学习之旅(二)认识BC1.2快充协议
人工智能
THMAIL13 分钟前
随机森林的 “Bootstrap 采样” 与 “特征随机选择”:如何避免过拟合?(附分类 / 回归任务实战)
人工智能·算法·决策树·随机森林·分类·bootstrap·sklearn
AI指北1 小时前
每周AI看 | 微软开源VibeVoice-1.5B、OpenAI历史性交棒、网易云商出席AICon全球人工智能开发与应用大会
大数据·人工智能·ai·微软·钉钉·在线客服·ai agent
yzx9910131 小时前
使用Python和GitHub构建京东数据自动化采集项目
c语言·开发语言·人工智能·python
嘀咕博客2 小时前
Glato - AI 驱动的广告视频创作平台
人工智能·ai工具
limengshi1383922 小时前
人工智能学习:Linux相关面试题
linux·人工智能·深度学习·学习
区块链小八歌2 小时前
从支付工具到收益资产:稳定币在 Berachain 上的二次进化
人工智能·区块链
介一安全3 小时前
AI 暗战: 回声室攻击 —— 解锁大模型安全防御的隐秘战场
人工智能·安全·ai·安全性测试
黎燃3 小时前
基于计算机视觉的无人便利店技术:从算法到部署的系统化实战指南
人工智能