深度学习(1):基础概念与创建项目

文章目录

基础概念

CPU(中央处理器)

CPU 是计算机的核心部件,负责执行计算和逻辑操作。它按照指令序列进行任务处理,擅长处理串行任务。CPU 的性能直接影响计算机的整体运行速度。

GPU(图形处理器)

GPU 最初设计用于图形渲染,能够并行处理大量数据。由于其强大的并行计算能力,GPU 被广泛应用于深度学习、科学计算和数据分析等需要高计算量的领域。

CUDA(Compute Unified Device Architecture)

CUDA 是 NVIDIA 推出的并行计算平台和编程模型。它允许开发者使用 C、C++、Python 等语言编写程序,在 GPU 上执行并行计算,从而大幅提升计算性能。

Anaconda

Anaconda 是一个开源的 Python 和 R 语言发行版,主要用于科学计算和数据分析。它集成了大量常用的数据科学包,如 NumPy、Pandas、SciPy 等,并包含 Conda 包管理器,方便环境管理和包依赖。

PyTorch 和 TensorFlow

PyTorch 和 TensorFlow 是两大主流的深度学习框架。

  • TensorFlow:由 Google 开发,支持静态和动态图计算,适用于从研究到生产的各个环节。它有丰富的工具和社区支持,适合构建大型复杂模型。

  • PyTorch:由 Facebook 开发,以其动态计算图和易于使用的 API 而闻名。PyTorch 更加灵活,便于调试,深受研究人员和初学者的喜爱。

这两个框架都支持 GPU 加速,利用 GPU 的并行计算能力加速深度学习模型的训练和推理。

创建项目

1.在Anaconda上创建序虚拟环境


2.创建PyProject

3.创建完成

相关推荐
FIN6668几秒前
昂瑞微:以射频“芯”火 点亮科技强国之路
前端·人工智能·科技·前端框架·智能
Python智慧行囊4 分钟前
图像处理(三)--开运算与闭运算,梯度运算,礼帽与黑帽
人工智能·算法·计算机视觉
亚马逊云开发者7 分钟前
Amazon Generative AI Use Cases:“开箱即用的企业级生成式AI应用平台”
人工智能
SPFFC189380330537 分钟前
AI玩具排线专业生产与全球营销策略
人工智能·学习·智能手机·显示器·智能手表·平板·游戏机
过往入尘土9 分钟前
YOLOv3详解:实时目标检测的巅峰之作
人工智能·计算机视觉·目标跟踪
sali-tec14 分钟前
C# 基于halcon的视觉工作流-章46-不匀面划痕
人工智能·算法·计算机视觉·c#
JJJJ_iii17 分钟前
【机器学习03】学习率与特征工程、多项式回归、逻辑回归
人工智能·pytorch·笔记·学习·机器学习·回归·逻辑回归
大明者省30 分钟前
人工智能学科主要单词
人工智能
BEOL贝尔科技30 分钟前
不稳定的冰箱如何做权限管理?冰箱锁加入远程管理功能后生物保存工作发生了哪些变化?
大数据·人工智能
AI拉呱_34 分钟前
第144期《2025年AI现状报告》解读(二):产业篇
人工智能·chatgpt