深度学习(1):基础概念与创建项目

文章目录

基础概念

CPU(中央处理器)

CPU 是计算机的核心部件,负责执行计算和逻辑操作。它按照指令序列进行任务处理,擅长处理串行任务。CPU 的性能直接影响计算机的整体运行速度。

GPU(图形处理器)

GPU 最初设计用于图形渲染,能够并行处理大量数据。由于其强大的并行计算能力,GPU 被广泛应用于深度学习、科学计算和数据分析等需要高计算量的领域。

CUDA(Compute Unified Device Architecture)

CUDA 是 NVIDIA 推出的并行计算平台和编程模型。它允许开发者使用 C、C++、Python 等语言编写程序,在 GPU 上执行并行计算,从而大幅提升计算性能。

Anaconda

Anaconda 是一个开源的 Python 和 R 语言发行版,主要用于科学计算和数据分析。它集成了大量常用的数据科学包,如 NumPy、Pandas、SciPy 等,并包含 Conda 包管理器,方便环境管理和包依赖。

PyTorch 和 TensorFlow

PyTorch 和 TensorFlow 是两大主流的深度学习框架。

  • TensorFlow:由 Google 开发,支持静态和动态图计算,适用于从研究到生产的各个环节。它有丰富的工具和社区支持,适合构建大型复杂模型。

  • PyTorch:由 Facebook 开发,以其动态计算图和易于使用的 API 而闻名。PyTorch 更加灵活,便于调试,深受研究人员和初学者的喜爱。

这两个框架都支持 GPU 加速,利用 GPU 的并行计算能力加速深度学习模型的训练和推理。

创建项目

1.在Anaconda上创建序虚拟环境


2.创建PyProject

3.创建完成

相关推荐
学习前端的小z7 分钟前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
埃菲尔铁塔_CV算法35 分钟前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR35 分钟前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
打羽毛球吗️41 分钟前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
好喜欢吃红柚子1 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python1 小时前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯1 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠1 小时前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon1 小时前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~2 小时前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习