深度学习(1):基础概念与创建项目

文章目录

基础概念

CPU(中央处理器)

CPU 是计算机的核心部件,负责执行计算和逻辑操作。它按照指令序列进行任务处理,擅长处理串行任务。CPU 的性能直接影响计算机的整体运行速度。

GPU(图形处理器)

GPU 最初设计用于图形渲染,能够并行处理大量数据。由于其强大的并行计算能力,GPU 被广泛应用于深度学习、科学计算和数据分析等需要高计算量的领域。

CUDA(Compute Unified Device Architecture)

CUDA 是 NVIDIA 推出的并行计算平台和编程模型。它允许开发者使用 C、C++、Python 等语言编写程序,在 GPU 上执行并行计算,从而大幅提升计算性能。

Anaconda

Anaconda 是一个开源的 Python 和 R 语言发行版,主要用于科学计算和数据分析。它集成了大量常用的数据科学包,如 NumPy、Pandas、SciPy 等,并包含 Conda 包管理器,方便环境管理和包依赖。

PyTorch 和 TensorFlow

PyTorch 和 TensorFlow 是两大主流的深度学习框架。

  • TensorFlow:由 Google 开发,支持静态和动态图计算,适用于从研究到生产的各个环节。它有丰富的工具和社区支持,适合构建大型复杂模型。

  • PyTorch:由 Facebook 开发,以其动态计算图和易于使用的 API 而闻名。PyTorch 更加灵活,便于调试,深受研究人员和初学者的喜爱。

这两个框架都支持 GPU 加速,利用 GPU 的并行计算能力加速深度学习模型的训练和推理。

创建项目

1.在Anaconda上创建序虚拟环境


2.创建PyProject

3.创建完成

相关推荐
爱寂寞的时光4 分钟前
GPTQ原理浅析及简单实现
人工智能·机器学习
Suryxin.9 分钟前
从0开始复现nano-vllm「ModelRunner.capture_cudagraph()」
人工智能·pytorch·深度学习·vllm
武汉唯众智创19 分钟前
云边端协同落地:唯众AI实训平台技术架构实操解析
人工智能·人工智能实训·ai 实训平台·职教 ai 实训·职教院校实训方案·高校职校实训方案
大猫子的技术日记22 分钟前
Playwright 自动化测试入门指南:Python 开发者的端到端实战
开发语言·人工智能·python
数琨创享TQMS质量数智化23 分钟前
数琨创享:以数智化质量目标管理闭环赋能可量化、可追溯、可驱动的质量运营
大数据·人工智能·qms质量管理系统
laplace012335 分钟前
Kv cache
人工智能·agent·claude·rag·skills
Maynor99635 分钟前
OpenClaw 中转站配置完全指南
linux·运维·服务器·人工智能·飞书
马拉AI42 分钟前
Transformer范式改变?稀疏线性混合SALA架构发布,单卡5090跑通百万长文!
深度学习·架构·transformer
Eric22342 分钟前
CLI-Agent-Manager:面向 Vibe Coding 的多 Agent 统一管理面板
人工智能·后端·开源
如若1231 小时前
SoftGroup训练FORinstance森林点云数据集——从零到AP=0.506完整复现
人工智能·python·深度学习·神经网络·计算机视觉