深度学习(1):基础概念与创建项目

文章目录

基础概念

CPU(中央处理器)

CPU 是计算机的核心部件,负责执行计算和逻辑操作。它按照指令序列进行任务处理,擅长处理串行任务。CPU 的性能直接影响计算机的整体运行速度。

GPU(图形处理器)

GPU 最初设计用于图形渲染,能够并行处理大量数据。由于其强大的并行计算能力,GPU 被广泛应用于深度学习、科学计算和数据分析等需要高计算量的领域。

CUDA(Compute Unified Device Architecture)

CUDA 是 NVIDIA 推出的并行计算平台和编程模型。它允许开发者使用 C、C++、Python 等语言编写程序,在 GPU 上执行并行计算,从而大幅提升计算性能。

Anaconda

Anaconda 是一个开源的 Python 和 R 语言发行版,主要用于科学计算和数据分析。它集成了大量常用的数据科学包,如 NumPy、Pandas、SciPy 等,并包含 Conda 包管理器,方便环境管理和包依赖。

PyTorch 和 TensorFlow

PyTorch 和 TensorFlow 是两大主流的深度学习框架。

  • TensorFlow:由 Google 开发,支持静态和动态图计算,适用于从研究到生产的各个环节。它有丰富的工具和社区支持,适合构建大型复杂模型。

  • PyTorch:由 Facebook 开发,以其动态计算图和易于使用的 API 而闻名。PyTorch 更加灵活,便于调试,深受研究人员和初学者的喜爱。

这两个框架都支持 GPU 加速,利用 GPU 的并行计算能力加速深度学习模型的训练和推理。

创建项目

1.在Anaconda上创建序虚拟环境


2.创建PyProject

3.创建完成

相关推荐
itwangyang5205 分钟前
AIDD-人工智能药物-pyecharts-gallery
人工智能·python·语言模型·自然语言处理
扎克begod14 分钟前
AI大模型进阶系列(03) prompt 工程指南 | 实战核心技术有哪些?
人工智能·prompt
that's boy16 分钟前
解锁Midjourney创作潜能:超详细提示词(Prompts)分类指南
人工智能·chatgpt·midjourney·ai绘画·ai写作·gpt-4o·deepseek
FIT2CLOUD飞致云17 分钟前
速来体验丨1Panel支持一键部署MCP Server,告别繁琐配置!
人工智能·开源
pen-ai27 分钟前
【NLP】 18. Tokenlisation 分词 BPE, WordPiece, Unigram/SentencePiece
人工智能·自然语言处理
taoqick43 分钟前
Deepseek Bart模型相比Bert的优势
人工智能·深度学习·bert
风筝超冷2 小时前
Seq2Seq - 编码器(Encoder)和解码器(Decoder)
人工智能·深度学习·seq2seq
uncle_ll2 小时前
李宏毅NLP-3-语音识别part2-LAS
人工智能·自然语言处理·语音识别·las
helloworld工程师2 小时前
Spring AI应用:利用DeepSeek+嵌入模型+Milvus向量数据库实现检索增强生成--RAG应用(超详细)
人工智能·spring·milvus