深度学习(1):基础概念与创建项目

文章目录

基础概念

CPU(中央处理器)

CPU 是计算机的核心部件,负责执行计算和逻辑操作。它按照指令序列进行任务处理,擅长处理串行任务。CPU 的性能直接影响计算机的整体运行速度。

GPU(图形处理器)

GPU 最初设计用于图形渲染,能够并行处理大量数据。由于其强大的并行计算能力,GPU 被广泛应用于深度学习、科学计算和数据分析等需要高计算量的领域。

CUDA(Compute Unified Device Architecture)

CUDA 是 NVIDIA 推出的并行计算平台和编程模型。它允许开发者使用 C、C++、Python 等语言编写程序,在 GPU 上执行并行计算,从而大幅提升计算性能。

Anaconda

Anaconda 是一个开源的 Python 和 R 语言发行版,主要用于科学计算和数据分析。它集成了大量常用的数据科学包,如 NumPy、Pandas、SciPy 等,并包含 Conda 包管理器,方便环境管理和包依赖。

PyTorch 和 TensorFlow

PyTorch 和 TensorFlow 是两大主流的深度学习框架。

  • TensorFlow:由 Google 开发,支持静态和动态图计算,适用于从研究到生产的各个环节。它有丰富的工具和社区支持,适合构建大型复杂模型。

  • PyTorch:由 Facebook 开发,以其动态计算图和易于使用的 API 而闻名。PyTorch 更加灵活,便于调试,深受研究人员和初学者的喜爱。

这两个框架都支持 GPU 加速,利用 GPU 的并行计算能力加速深度学习模型的训练和推理。

创建项目

1.在Anaconda上创建序虚拟环境


2.创建PyProject

3.创建完成

相关推荐
丝斯201118 分钟前
AI学习笔记整理(50)——大模型中的Graph RAG
人工智能·笔记·学习
Coder_Boy_23 分钟前
基于SpringAI的在线考试系统-DDD业务领域模块设计思路
java·数据库·人工智能·spring boot·ddd
甜辣uu42 分钟前
双算法融合,预测精准度翻倍!机器学习+深度学习驱动冬小麦生长高度与产量智能预测系统
人工智能·小麦·冬小麦·生长高度·植物生长预测·玉米·生长预测
AI街潜水的八角1 小时前
深度学习烟叶病害分割系统3:含训练测试代码、数据集和GUI交互界面
人工智能·深度学习
AI街潜水的八角1 小时前
深度学习烟叶病害分割系统1:数据集说明(含下载链接)
人工智能·深度学习
weixin_446934031 小时前
统计学中“in sample test”与“out of sample”有何区别?
人工智能·python·深度学习·机器学习·计算机视觉
大模型RAG和Agent技术实践1 小时前
智审未来:基于 LangGraph 多 Agent 协同的新闻 AI 审查系统深度实战(完整源代码)
人工智能·agent·langgraph·ai内容审核
莫非王土也非王臣2 小时前
循环神经网络
人工智能·rnn·深度学习
Java后端的Ai之路2 小时前
【AI大模型开发】-基于 Word2Vec 的中文古典小说词向量分析实战
人工智能·embedding·向量·word2vec·ai大模型开发