深度学习(1):基础概念与创建项目

文章目录

基础概念

CPU(中央处理器)

CPU 是计算机的核心部件,负责执行计算和逻辑操作。它按照指令序列进行任务处理,擅长处理串行任务。CPU 的性能直接影响计算机的整体运行速度。

GPU(图形处理器)

GPU 最初设计用于图形渲染,能够并行处理大量数据。由于其强大的并行计算能力,GPU 被广泛应用于深度学习、科学计算和数据分析等需要高计算量的领域。

CUDA(Compute Unified Device Architecture)

CUDA 是 NVIDIA 推出的并行计算平台和编程模型。它允许开发者使用 C、C++、Python 等语言编写程序,在 GPU 上执行并行计算,从而大幅提升计算性能。

Anaconda

Anaconda 是一个开源的 Python 和 R 语言发行版,主要用于科学计算和数据分析。它集成了大量常用的数据科学包,如 NumPy、Pandas、SciPy 等,并包含 Conda 包管理器,方便环境管理和包依赖。

PyTorch 和 TensorFlow

PyTorch 和 TensorFlow 是两大主流的深度学习框架。

  • TensorFlow:由 Google 开发,支持静态和动态图计算,适用于从研究到生产的各个环节。它有丰富的工具和社区支持,适合构建大型复杂模型。

  • PyTorch:由 Facebook 开发,以其动态计算图和易于使用的 API 而闻名。PyTorch 更加灵活,便于调试,深受研究人员和初学者的喜爱。

这两个框架都支持 GPU 加速,利用 GPU 的并行计算能力加速深度学习模型的训练和推理。

创建项目

1.在Anaconda上创建序虚拟环境


2.创建PyProject

3.创建完成

相关推荐
前端程序猿之路几秒前
30天大模型学习之Day3:高级 Prompt 工程
人工智能·python·学习·语言模型·大模型·prompt·ai编程
数据分享者几秒前
汽车价格预测模型评估数据集分析:基于LightAutoML的多模型融合预测结果与性能对比-机器学习-优化汽车价格预测模型-丰富的模型对比实验数据
人工智能·机器学习·数据挖掘·汽车
minhuan几秒前
大模型应用:量化校准:全局/分组 Min-Max、GPTQ、AWQ 算法最优匹配.54
人工智能·机器学习·量化校准·gptq量化误差补偿·awq权重均衡
pusheng20251 分钟前
数据中心安全警报:为何“免维护”气体传感器可能正在制造危险盲区?
linux·网络·人工智能
ar01232 分钟前
精密制造行业应用AR装配技术
人工智能·ar
也许是_3 分钟前
大模型应用技术之 Agent框架 AutoGPT
人工智能·python
三不原则3 分钟前
实战:Serverless 架构部署高频 AI API,动态扩缩容配置
人工智能·架构·serverless
华如锦4 分钟前
MongoDB作为小型 AI智能化系统的数据库
java·前端·人工智能·算法
lkbhua莱克瓦245 分钟前
Prompt、分词器与Token介绍
人工智能·ai·prompt·token
机器学习之心HML5 分钟前
GSABO(通常指混合了模拟退火SA和天牛须搜索BAS的改进算法)与BP神经网络结合,用于爆破参数优选
人工智能·神经网络·算法·爆破参数优选