深度学习中的正则化和归一化

https://blog.csdn.net/wuxusanren/article/details/131175185

归一化是一种将数据按比例缩放,使之落入一个小的特定区间的过程。归一化的主要目的是消除不同量纲及单位影响,提高数据间的可比性,同时也有助于加快算法的收敛速度。如softmax等,也常用于数据预处理

正则化是制定一些规则,防止模型过拟合,通常是在loss中体现,如L1正则化(loss + λ |weight|,有助于产生稀疏解,不重要的参数会变成0,因为绝对值的倒数是不变的),L2正则化(loss + λ * weight**2,有助于使模型参数趋于平滑,即参数值不会太大也不会太小,因为次方倒数随着随着数值变大而变大,数值变小而变小); 还有dropout,early stop等防止过拟合

相关推荐
月下倩影时18 分钟前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
PixelMind21 分钟前
【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
人工智能·生成对抗网络·扩散模型·图像复原
说私域1 小时前
从裂变能力竞争到技术水平竞争:开源AI智能名片链动2+1模式S2B2C商城小程序对微商企业竞争格局的重塑
人工智能·小程序·开源
xybDIY1 小时前
基于 Tuya.AI 开源的大模型构建智能聊天机器人
人工智能·机器人·开源
这张生成的图像能检测吗1 小时前
(论文速读)基于DCP-MobileViT网络的焊接缺陷识别
图像处理·深度学习·计算机视觉·可视化·缺陷识别·焊缝缺陷
智慧地球(AI·Earth)3 小时前
GPT-5.1发布!你的AI更暖更智能!
人工智能·gpt·神经网络·aigc·agi
宁渡AI大模型3 小时前
从生成内容角度介绍开源AI大模型
人工智能·ai·大模型·qwen
xier_ran3 小时前
深度学习:Mini-Batch 梯度下降(Mini-Batch Gradient Descent)
人工智能·深度学习·batch
Microvision维视智造4 小时前
变速箱阀芯上料易错漏?通用 2D 视觉方案高效破局,成汽车制造检测优选!
人工智能
AAA小肥杨4 小时前
探索K8s与AI的结合:PyTorch训练任务在k8s上调度实践
人工智能·pytorch·docker·ai·云原生·kubernetes