深度学习中的正则化和归一化

https://blog.csdn.net/wuxusanren/article/details/131175185

归一化是一种将数据按比例缩放,使之落入一个小的特定区间的过程。归一化的主要目的是消除不同量纲及单位影响,提高数据间的可比性,同时也有助于加快算法的收敛速度。如softmax等,也常用于数据预处理

正则化是制定一些规则,防止模型过拟合,通常是在loss中体现,如L1正则化(loss + λ |weight|,有助于产生稀疏解,不重要的参数会变成0,因为绝对值的倒数是不变的),L2正则化(loss + λ * weight**2,有助于使模型参数趋于平滑,即参数值不会太大也不会太小,因为次方倒数随着随着数值变大而变大,数值变小而变小); 还有dropout,early stop等防止过拟合

相关推荐
Shawn_Shawn5 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like7 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a7 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者8 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper8 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_9 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信9 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235869 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活