深度学习中的正则化和归一化

https://blog.csdn.net/wuxusanren/article/details/131175185

归一化是一种将数据按比例缩放,使之落入一个小的特定区间的过程。归一化的主要目的是消除不同量纲及单位影响,提高数据间的可比性,同时也有助于加快算法的收敛速度。如softmax等,也常用于数据预处理

正则化是制定一些规则,防止模型过拟合,通常是在loss中体现,如L1正则化(loss + λ |weight|,有助于产生稀疏解,不重要的参数会变成0,因为绝对值的倒数是不变的),L2正则化(loss + λ * weight**2,有助于使模型参数趋于平滑,即参数值不会太大也不会太小,因为次方倒数随着随着数值变大而变大,数值变小而变小); 还有dropout,early stop等防止过拟合

相关推荐
技术狂人1685 分钟前
(六)大模型算法与优化 15 题!量化 / 剪枝 / 幻觉缓解,面试说清性能提升逻辑(深度篇)
人工智能·深度学习·算法·面试·职场和发展
yyf1989052510 分钟前
智能体的中文文献
人工智能
小北方城市网11 分钟前
第 9 课:Python 全栈项目性能优化实战|从「能用」到「好用」(企业级优化方案|零基础落地)
开发语言·数据库·人工智能·python·性能优化·数据库架构
却道天凉_好个秋14 分钟前
OpenCV(五十二):图像修复
人工智能·opencv·计算机视觉
Deepoch19 分钟前
破解酒店服务难题:Deepoc赋能机器人智能升级
人工智能·机器人·开发板·具身模型·deepoc·酒店机器人
间彧22 分钟前
Vibe Coding在实际项目中如何与现有开发流程(如敏捷开发、CI/CD)结合?
人工智能
Jul7_LYY23 分钟前
雷达信号分选01
深度学习·信号处理
JSU_曾是此间年少25 分钟前
pytorch自动微分机制探寻
人工智能·pytorch·python
Hcoco_me26 分钟前
大模型面试题40:结合RoPE位置编码、优秀位置编码的核心特性
人工智能·深度学习·lstm·transformer·word2vec
CoovallyAIHub28 分钟前
为你的 2026 年计算机视觉应用选择合适的边缘 AI 硬件
深度学习·算法·计算机视觉