深度学习中的正则化和归一化

https://blog.csdn.net/wuxusanren/article/details/131175185

归一化是一种将数据按比例缩放,使之落入一个小的特定区间的过程。归一化的主要目的是消除不同量纲及单位影响,提高数据间的可比性,同时也有助于加快算法的收敛速度。如softmax等,也常用于数据预处理

正则化是制定一些规则,防止模型过拟合,通常是在loss中体现,如L1正则化(loss + λ |weight|,有助于产生稀疏解,不重要的参数会变成0,因为绝对值的倒数是不变的),L2正则化(loss + λ * weight**2,有助于使模型参数趋于平滑,即参数值不会太大也不会太小,因为次方倒数随着随着数值变大而变大,数值变小而变小); 还有dropout,early stop等防止过拟合

相关推荐
Liue612312313 小时前
基于YOLOv26的口罩佩戴检测与识别系统实现与优化
人工智能·yolo·目标跟踪
小二·5 小时前
Python Web 开发进阶实战 :AI 原生数字孪生 —— 在 Flask + Three.js 中构建物理世界实时仿真与优化平台
前端·人工智能·python
chinesegf5 小时前
文本嵌入模型的比较(一)
人工智能·算法·机器学习
哥布林学者5 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入 课后习题与代码实践
深度学习·ai
珠海西格电力5 小时前
零碳园区的能源结构优化需要哪些技术支持?
大数据·人工智能·物联网·架构·能源
Black蜡笔小新5 小时前
视频汇聚平台EasyCVR打造校园消防智能监管新防线
网络·人工智能·音视频
珠海西格电力科技5 小时前
双碳目标下,微电网为何成为能源转型核心载体?
网络·人工智能·物联网·云计算·智慧城市·能源
2501_941837265 小时前
【计算机视觉】基于YOLOv26的交通事故检测与交通状况分析系统详解_1
人工智能·yolo·计算机视觉
HyperAI超神经6 小时前
加州大学构建基于全连接神经网络的片上光谱仪,在芯片级尺寸上实现8纳米的光谱分辨率
人工智能·深度学习·神经网络·机器学习·ai编程
badfl6 小时前
AI漫剧技术方案拆解:NanoBanana+Sora视频生成全流程
人工智能·ai·ai作画