Unsupervised Deep Embedding for Clustering Analysis

0. 论文信息

  • 标题:Unsupervised Deep Embedding for Clustering Analysis
  • 期刊:International Conference on Machine Learning
  • 作者:Junyuan Xie,Ross Girshick,Ali Farhadi
  • 机构:University of Washington,Facebook AI Research (FAIR)
  • 代码链接:https://github.com/vlukiyanov/pt-dec

1. 摘要

聚类是许多数据驱动应用领域的核心,在距离函数和分组算法方面得到了广泛的研究。相对较少的工作集中在学习聚类表示上。在本文中,我们提出了深度嵌入聚类(DEC),这是一种使用深度神经网络同时学习特征表示和聚类分配的方法。DEC学习从数据空间到低维特征空间的映射,在该空间中迭代优化聚类目标。我们对图像和文本语料库的实验评估显示出比最先进的方法的显着改进。

2. 实验结果


3. 主要贡献

  • 深度嵌入和聚类的联合优化;
  • 通过软分配进行新颖的迭代细化;
  • 在聚类精度和速度方面最先进的聚类结果。

4. 方法


5. 总结 & 限制性

本文提出了一种在联合优化特征空间中对一组数据点进行聚类的算法Deep Embedding Clustering。DEC 通过迭代优化具有自训练目标分布的基于 KL 散度的聚类目标来工作。该方法可以看作是半监督自我训练的无监督扩展。该框架提供了一种学习专门用于聚类的表示的方法,而无需groundtruth集群成员标签。实证研究表明提出的算法的强度。DEC 在超参数设置方面提供了更好的性能和鲁棒性,这在无监督任务中尤其重要,因为交叉验证是不可能的。DEC 还具有数据点数量的线性复杂性,使其能够扩展到大型数据集。

相关推荐
真就死难5 天前
适用于个人开发、中小型项目的Embedding方案(配合ChromaDB)
python·embedding·rag
INFINI Labs10 天前
Easysearch 集成阿里云与 Ollama Embedding API,构建端到端的语义搜索系统
阿里云·云计算·openai·embedding·easysearch
毛飞龙13 天前
深度学习中的三种Embedding技术详解
深度学习·embedding
是瑶瑶子啦16 天前
【AlphaFold3】网络架构篇(5)|Template embedding & Pairformer stack
网络·embedding
星月昭铭16 天前
Spring AI调用Embedding模型返回HTTP 400:Invalid HTTP request received分析处理
人工智能·spring boot·python·spring·ai·embedding
是瑶瑶子啦17 天前
【AlphaFold3】网络架构篇(2)|Input Embedding 对输入进行特征嵌入
架构·embedding
IT古董22 天前
【第四章:大模型(LLM)】01.Embedding is all you need-(6)从 Word2Vec 到推荐/广告系统,再到大语言模型(LLM)
语言模型·embedding·word2vec
zeroporn2 个月前
以玄幻小说方式打开深度学习词嵌入算法!! 使用Skip-gram来完成 Word2Vec 词嵌入(Embedding)
人工智能·深度学习·算法·自然语言处理·embedding·word2vec·skip-gram
一个处女座的程序猿2 个月前
LLMs之Embedding:Qwen3 Embedding的简介、安装和使用方法、案例应用之详细攻略
llm·embedding
酌沧2 个月前
Qwen3 Embedding 结构-加载-训练 看透模型设计哲学
人工智能·embedding