使用vllm部署大模型

使用 vllm 部署大模型

部署前准备

需要把想运行的模型下载到服务器上
  • 以 通义千问-7B 为案例
下载模型
shell 复制代码
git lfs install
pip install -U huggingface_hub
huggingface-cli download --resume-download Qwen/Qwen-7B-Chat --local-dir Qwen-7B-Chat

开始部署

第一步 设置 conda 环境

shell 复制代码
# 创建新的 conda 环境.
conda create -n llm python=3.9 -y

conda activate llm

第二步 安装 vllm

shell 复制代码
pip install vllm

第三步 安装 modelscope

用于下载镜像加速

shell 复制代码
pip install modelscope

第四步 运行我们的模型

shell 复制代码
VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server  --model="/home/Qwen-7B-Chat" --trust-remote-code --port 6006

第五步测试:

记得把下面的地址换成自己服务的地址

shell 复制代码
curl http://localhost:6006/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "/home/Qwen-7B-Chat",
        "max_tokens":60,
        "messages": [
            {
                "role": "user",
                "content": "你是谁?"
            }
        ]
    }'

扩展

自定义api-key:

  • 如果想带上api-key,可以在执行命令的时候带上:

    shell 复制代码
    VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server  --model="/home/Qwen-7B-Chat" --dtype auto --api-key sk-llm --trust-remote-code --port 6006
  • 测试

    shell 复制代码
    curl http://localhost:6006/v1/chat/completions \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer sk-llm" \
        -d '{
           "model": "/home/Qwen-7B-Chat",
            "max_tokens":60,
            "messages": [
                {
                    "role": "user",
                    "content": "你是谁?"
                }
            ]
        }'

启动多GPU服务:

  • 要运行多GPU服务,在启动命令加上--tensor-parallel-size参数,比如2张GPU卡:
shell 复制代码
VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server --model="/home/Qwen-7B-Chat" --dtype auto --api-key sk-llm  --trust-remote-code --port 6006 --tensor-parallel-size 2
  • 测试

    shell 复制代码
    curl http://localhost:6006/v1/chat/completions \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer sk-llm" \
        -d '{
           "model": "/home/Qwen-7B-Chat",
            "max_tokens":60,
            "messages": [
                {
                    "role": "user",
                    "content": "你是谁?"
                }
            ]
        }'

总结

  • 在huggingface hub拉取镜像,推荐用 官方提供的专门下载而设计的工具链huggingface-cli。不仅可以下载模型、数据、还可以登录huggingface、上传模型和数据等。但缺点是不支持多线程。
  • 不建议用git clone的方式,虽然很简单,但是不支持断点续传,主要是clone会下载历史版本占用磁盘空间,.git文件夹会比较大。
  • ollama和vllm两个都是目前流行的部署大模型的工具,各有优势。vllm有对内存做了优化和推理加速;ollama则通过量化,使模型变小,轻量部署,适用于不同的场景。
相关推荐
聚客AI7 分钟前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_3875456426 分钟前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨23743 分钟前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
二川bro1 小时前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm1 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl1 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~2 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进2 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木2 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
lishaoan772 小时前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归