使用vllm部署大模型

使用 vllm 部署大模型

部署前准备

需要把想运行的模型下载到服务器上
  • 以 通义千问-7B 为案例
下载模型
shell 复制代码
git lfs install
pip install -U huggingface_hub
huggingface-cli download --resume-download Qwen/Qwen-7B-Chat --local-dir Qwen-7B-Chat

开始部署

第一步 设置 conda 环境

shell 复制代码
# 创建新的 conda 环境.
conda create -n llm python=3.9 -y

conda activate llm

第二步 安装 vllm

shell 复制代码
pip install vllm

第三步 安装 modelscope

用于下载镜像加速

shell 复制代码
pip install modelscope

第四步 运行我们的模型

shell 复制代码
VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server  --model="/home/Qwen-7B-Chat" --trust-remote-code --port 6006

第五步测试:

记得把下面的地址换成自己服务的地址

shell 复制代码
curl http://localhost:6006/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
        "model": "/home/Qwen-7B-Chat",
        "max_tokens":60,
        "messages": [
            {
                "role": "user",
                "content": "你是谁?"
            }
        ]
    }'

扩展

自定义api-key:

  • 如果想带上api-key,可以在执行命令的时候带上:

    shell 复制代码
    VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server  --model="/home/Qwen-7B-Chat" --dtype auto --api-key sk-llm --trust-remote-code --port 6006
  • 测试

    shell 复制代码
    curl http://localhost:6006/v1/chat/completions \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer sk-llm" \
        -d '{
           "model": "/home/Qwen-7B-Chat",
            "max_tokens":60,
            "messages": [
                {
                    "role": "user",
                    "content": "你是谁?"
                }
            ]
        }'

启动多GPU服务:

  • 要运行多GPU服务,在启动命令加上--tensor-parallel-size参数,比如2张GPU卡:
shell 复制代码
VLLM_USE_MODELSCOPE=True python -m vllm.entrypoints.openai.api_server --model="/home/Qwen-7B-Chat" --dtype auto --api-key sk-llm  --trust-remote-code --port 6006 --tensor-parallel-size 2
  • 测试

    shell 复制代码
    curl http://localhost:6006/v1/chat/completions \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer sk-llm" \
        -d '{
           "model": "/home/Qwen-7B-Chat",
            "max_tokens":60,
            "messages": [
                {
                    "role": "user",
                    "content": "你是谁?"
                }
            ]
        }'

总结

  • 在huggingface hub拉取镜像,推荐用 官方提供的专门下载而设计的工具链huggingface-cli。不仅可以下载模型、数据、还可以登录huggingface、上传模型和数据等。但缺点是不支持多线程。
  • 不建议用git clone的方式,虽然很简单,但是不支持断点续传,主要是clone会下载历史版本占用磁盘空间,.git文件夹会比较大。
  • ollama和vllm两个都是目前流行的部署大模型的工具,各有优势。vllm有对内存做了优化和推理加速;ollama则通过量化,使模型变小,轻量部署,适用于不同的场景。
相关推荐
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
一 铭2 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力5 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心6 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域7 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技7 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_17 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎8 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎9 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程