目标检测——YOLO11算法解读

作者:Ultralytics公司

代码:https://github.com/ultralytics/ultralytics


YOLO系列算法解读:
YOLOv1通俗易懂版解读SSD算法解读YOLOv2算法解读YOLOv3算法解读YOLOv4算法解读YOLOv5算法解读YOLOR算法解读YOLOX算法解读YOLOv6算法解读YOLOv7算法解读YOLOv8算法解读YOLOv9算法解读YOLOv10算法解读YOLO11算法解读

PP-YOLO系列算法解读:
PP-YOLO算法解读PP-YOLOv2算法解读PP-PicoDet算法解读PP-YOLOE算法解读PP-YOLOE-R算法解读


文章目录


1、算法概述

最近Ultralytics项目又更新,退出了YOLOv11,基于上一个版本YOLOv8变化不是很大。还是和YOLOv8一样,可参考工程readme里面参考文档(https://docs.ultralytics.com/models/yolo11/),该文档非常丰富,包含如何快速运行、训练、验证、预测及导出其他格式模型,还包含除检测任务的其他任务的扩展如:分割、分类和姿态估计,同时也包含YOLO系列其他模型的汇总介绍。相比YOLO之前其他版本,YOLO11推理速度更快,精度更高。如下图:

按照官方文档的介绍,YOLO11主要改进有如下几点:

  1. 增强特征提取能力,YOLO11采用改进的backbone和neck结构,增强了特征提取能力,以实现更高精确和更复杂的目标检测任务。具体有,backbone部分,将YOLOv8的C2f模块替换成了YOLO11的C3k2模块,在YOLOv8的SPPF模块后新增了C2PSA模块,这是一个由两个卷积层和一个多头自注意力模块组成的,用于增强特征提取能力。在检测头的分类分支中替换了两个常规卷积层为depthwise卷积,另外就是整个n/s/m/l/x系列模型的depth、width、max_channels的比例参数相对于YOLOv8进行了调整。
  2. 更高效且速度更快,因为整个结构的调整和训练流程的优化,使得模型推理速度更快。
  3. 更高的精度,但是参数量更少
  4. 和YOLOv8一样,YOLO11依然可以无缝衔接到实例分割、图像分类以及姿态估计任务,并且支持导出多种格式的模型,并且可以在CPU/GPU上运行。

2、YOLO11细节

YOLO11n网络结构如下所示,自己用PPT画的,有错误的地方,还请大家提示一下。

对比YOLO11和YOLOv8的yaml格式网络结构配置

可以看到网络规模n/s/m/l/x的深度、宽度和输出通道数配置比例有改变,层数增多了,但是参数量和flops却减少了。

2.1 YOLO11的C3k2结构

YOLO11中的C3k2结构如下图:

由子模块ConvModule和多个Bottleneck所组成,而Bottleneck又因是否用C3k模块而变化,当不用C3k模块时,Bottleneck和YOLOv8一样,而用C3k模块时,就是YOLO11改进的地方。

2.2 新增的C2PSA结构

另一个大的改进是在SPPF后面新增了C2PSA模块,其结构如下:

其中C2PSA模块的核心是PSABlock,这是一个带自注意力机制的模块,也就是transformer结构。新增这个模块可以增强backbone提取特征的能力。

相关推荐
神筆&『馬良』5 小时前
Foundation_pose在自己的物体上复现指南:实现任意物体6D位姿检测(利用realsense_D435i和iphone_16pro手机)
目标检测·ubuntu·机器人·视觉检测
孤狼warrior11 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
水中加点糖13 小时前
小白都能看懂的——车牌检测与识别(最新版YOLO26快速入门)
人工智能·yolo·目标检测·计算机视觉·ai·车牌识别·lprnet
禁默15 小时前
从图像预处理到目标检测:Ops-CV 助力 CV 任务在昇腾 NPU 上高效运行
人工智能·目标检测·目标跟踪·cann
前端摸鱼匠1 天前
YOLOv8 环境配置全攻略:Python、PyTorch 与 CUDA 的和谐共生
人工智能·pytorch·python·yolo·目标检测
Token_w1 天前
CANN ops-cv解读——AIGC图像生成/目标检测的图像处理算子库
图像处理·目标检测·aigc
BestSongC1 天前
行人摔倒检测系统 - 前端文档(1)
前端·人工智能·目标检测
lxs-1 天前
CANN计算机视觉算子库ops-cv全面解析:图像处理与目标检测的高性能引擎
图像处理·目标检测·计算机视觉
哈__1 天前
CANN加速3D目标检测推理:点云处理与特征金字塔优化
目标检测·3d·目标跟踪
白日做梦Q1 天前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习