LLM:badcase分析

bad case分析是了解业务、了解场景的重要途径,知道当前研究、实践中容易出现的问题,往通俗的说,吸收经验的重要途径。

分析badcase必须要先了解目前模型的效果,也就是baseline,知道该往哪个方向努力。

现状

评测集

要兼顾数量、统计意义、质量。

指标

指标的设计必须要考虑观测的目标。

注重指标的口径,比如不同数据源的情况。

多个指标的组合观测。

结论

确定预期的目标、进一步优化我们当前的算法方案的方向。

分析

分析的对象

根据优化算法的方面来观察不利于指标提升的badcase。

分析思路

粗看法

大体上去看,错误的样本都有什么特点,带有哪些特征,例如长度、句式等是否有什么特点。

追溯法

对一个case,重现整个训练和预测过程的方法。给定一个bad case,准备好日志,分析预测的每个阶段的分析结果,查看是否符合预期。

解决

样本的误导

增广数据

阈值的确定和权衡

不同的阈值得到的召回不一样

预处理

预处理的本质是对数据进行处理使之更好地被用来预测

前处理

指模型预测之前的处理,尤其在模型比较大,性能要求比较高的场景,我们需要把一些肯定确定能快速预测出来的东西给过滤掉,从而提升性能也降低模型的负担,最简单的例如黑白名单,复杂的可以有一些针对业务的规则,例如超短句或者超长句直接拒绝等等,能用规则的尽量用规则。

后处理

指在模型预测以后的一些调整,最直接能想到的就是阈值过滤,但不仅是这些,有的时候需要结合模型的预测打分进行调整

参考:
https://mp.weixin.qq.com/s/GUDVPL_7oZKKUtQZ2ZP4tA

相关推荐
合方圆~小文1 天前
智能变焦球机:全方位监控升级新标杆
数据库·人工智能·前端框架
许泽宇的技术分享1 天前
AgentFramework-零基础入门-第10章_进阶主题和最佳实践
人工智能·agent框架·agentframework
海中有金1 天前
Unreal Engine 线程模型深度解析[2]
人工智能·游戏引擎·虚幻
才思喷涌的小书虫1 天前
实战教程:从 0 到 1 手搓 DINO-X 定制模板,实现长尾场景精准检测和数据标注
人工智能·目标检测·计算机视觉·具身智能·数据标注·图像标注·模型定制
为暗香来1 天前
NLP自然语言处理基础总结
人工智能·自然语言处理
Study9961 天前
【电子书】大语言模型综述(391页)
人工智能·语言模型·自然语言处理·大模型·llm·gpt-3·大模型综述
暴总聊Ai1 天前
2025深圳冯国辉(AI创业实战教练):企业AI落地实战型AI训练讲师,助力深圳科技企业解决AI培训痛点
人工智能·科技
小毅&Nora1 天前
【人工智能】【深度学习】④ Stable Diffusion核心算法解析:从DDPM到文本生成图像的飞跃
人工智能·深度学习·stable diffusion
AI弟1 天前
大语言模型进阶(二)之大语言模型预训练数据
人工智能·深度学习·机器学习·语言模型·自然语言处理
阿杰学AI1 天前
AI核心知识28——大语言模型之Multi-Agent Systems(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·agent·多智能体系统