LLM:badcase分析

bad case分析是了解业务、了解场景的重要途径,知道当前研究、实践中容易出现的问题,往通俗的说,吸收经验的重要途径。

分析badcase必须要先了解目前模型的效果,也就是baseline,知道该往哪个方向努力。

现状

评测集

要兼顾数量、统计意义、质量。

指标

指标的设计必须要考虑观测的目标。

注重指标的口径,比如不同数据源的情况。

多个指标的组合观测。

结论

确定预期的目标、进一步优化我们当前的算法方案的方向。

分析

分析的对象

根据优化算法的方面来观察不利于指标提升的badcase。

分析思路

粗看法

大体上去看,错误的样本都有什么特点,带有哪些特征,例如长度、句式等是否有什么特点。

追溯法

对一个case,重现整个训练和预测过程的方法。给定一个bad case,准备好日志,分析预测的每个阶段的分析结果,查看是否符合预期。

解决

样本的误导

增广数据

阈值的确定和权衡

不同的阈值得到的召回不一样

预处理

预处理的本质是对数据进行处理使之更好地被用来预测

前处理

指模型预测之前的处理,尤其在模型比较大,性能要求比较高的场景,我们需要把一些肯定确定能快速预测出来的东西给过滤掉,从而提升性能也降低模型的负担,最简单的例如黑白名单,复杂的可以有一些针对业务的规则,例如超短句或者超长句直接拒绝等等,能用规则的尽量用规则。

后处理

指在模型预测以后的一些调整,最直接能想到的就是阈值过滤,但不仅是这些,有的时候需要结合模型的预测打分进行调整

参考:
https://mp.weixin.qq.com/s/GUDVPL_7oZKKUtQZ2ZP4tA

相关推荐
无心水7 小时前
【分布式利器:腾讯TSF】7、TSF高级部署策略全解析:蓝绿/灰度发布落地+Jenkins CI/CD集成(Java微服务实战)
java·人工智能·分布式·ci/cd·微服务·jenkins·腾讯tsf
北辰alk12 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云12 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm104313 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里13 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai17813 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京13 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
TGITCIC14 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬14 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能
bing.shao14 小时前
AI工作流如何开始
人工智能