LLM:badcase分析

bad case分析是了解业务、了解场景的重要途径,知道当前研究、实践中容易出现的问题,往通俗的说,吸收经验的重要途径。

分析badcase必须要先了解目前模型的效果,也就是baseline,知道该往哪个方向努力。

现状

评测集

要兼顾数量、统计意义、质量。

指标

指标的设计必须要考虑观测的目标。

注重指标的口径,比如不同数据源的情况。

多个指标的组合观测。

结论

确定预期的目标、进一步优化我们当前的算法方案的方向。

分析

分析的对象

根据优化算法的方面来观察不利于指标提升的badcase。

分析思路

粗看法

大体上去看,错误的样本都有什么特点,带有哪些特征,例如长度、句式等是否有什么特点。

追溯法

对一个case,重现整个训练和预测过程的方法。给定一个bad case,准备好日志,分析预测的每个阶段的分析结果,查看是否符合预期。

解决

样本的误导

增广数据

阈值的确定和权衡

不同的阈值得到的召回不一样

预处理

预处理的本质是对数据进行处理使之更好地被用来预测

前处理

指模型预测之前的处理,尤其在模型比较大,性能要求比较高的场景,我们需要把一些肯定确定能快速预测出来的东西给过滤掉,从而提升性能也降低模型的负担,最简单的例如黑白名单,复杂的可以有一些针对业务的规则,例如超短句或者超长句直接拒绝等等,能用规则的尽量用规则。

后处理

指在模型预测以后的一些调整,最直接能想到的就是阈值过滤,但不仅是这些,有的时候需要结合模型的预测打分进行调整

参考:
https://mp.weixin.qq.com/s/GUDVPL_7oZKKUtQZ2ZP4tA

相关推荐
Aaron15887 分钟前
基于RFSOC+VU13P+GPU架构在雷达电子战的技术
人工智能·算法·fpga开发·架构·硬件工程·信号处理·基带工程
yiersansiwu123d7 分钟前
AI大模型的技术演进与产业赋能:迈向协同共生的智能新时代
人工智能
weisian15113 分钟前
入门篇--人工智能发展史-4-点燃深度学习革命的那把火,AlexNet
人工智能·深度学习
梦帮科技20 分钟前
Scikit-learn特征工程实战:从数据清洗到提升模型20%准确率
人工智能·python·机器学习·数据挖掘·开源·极限编程
想用offer打牌1 小时前
LLM参数: Temperature 与 Top-p解析
人工智能·python·llm
kimi-2221 小时前
三种调用 ChatOllama 的方式
人工智能
公链开发1 小时前
链游开发全路径赋能:如何重塑从创意到生态的完整闭环
大数据·人工智能·ux
安徽正LU o561-6o623o71 小时前
露-大鼠活动记录仪 小动物活动记录仪
人工智能
dhdjjsjs1 小时前
Day43 PythonStudy
人工智能·机器学习
BJ_Bonree1 小时前
2025上海金融科技嘉年华启幕!博睿数据解读AI智能体重塑金融运维之道
人工智能·科技·金融