LLM:badcase分析

bad case分析是了解业务、了解场景的重要途径,知道当前研究、实践中容易出现的问题,往通俗的说,吸收经验的重要途径。

分析badcase必须要先了解目前模型的效果,也就是baseline,知道该往哪个方向努力。

现状

评测集

要兼顾数量、统计意义、质量。

指标

指标的设计必须要考虑观测的目标。

注重指标的口径,比如不同数据源的情况。

多个指标的组合观测。

结论

确定预期的目标、进一步优化我们当前的算法方案的方向。

分析

分析的对象

根据优化算法的方面来观察不利于指标提升的badcase。

分析思路

粗看法

大体上去看,错误的样本都有什么特点,带有哪些特征,例如长度、句式等是否有什么特点。

追溯法

对一个case,重现整个训练和预测过程的方法。给定一个bad case,准备好日志,分析预测的每个阶段的分析结果,查看是否符合预期。

解决

样本的误导

增广数据

阈值的确定和权衡

不同的阈值得到的召回不一样

预处理

预处理的本质是对数据进行处理使之更好地被用来预测

前处理

指模型预测之前的处理,尤其在模型比较大,性能要求比较高的场景,我们需要把一些肯定确定能快速预测出来的东西给过滤掉,从而提升性能也降低模型的负担,最简单的例如黑白名单,复杂的可以有一些针对业务的规则,例如超短句或者超长句直接拒绝等等,能用规则的尽量用规则。

后处理

指在模型预测以后的一些调整,最直接能想到的就是阈值过滤,但不仅是这些,有的时候需要结合模型的预测打分进行调整

参考:
https://mp.weixin.qq.com/s/GUDVPL_7oZKKUtQZ2ZP4tA

相关推荐
艾醒(AiXing-w)1 分钟前
大模型原理剖析——拆解预训练、微调、奖励建模与强化学习四阶段(以ChatGPT构建流程为例)
人工智能·chatgpt
币圈菜头2 分钟前
GAEA Carbon-Silicon Symbiotism NFT 解析:它在系统中扮演的角色,以及与空投权重的关系
人工智能·web3·去中心化·区块链
Deepoch4 分钟前
从“飞行相机”到“空中智能体”:无人机如何重构行业生产力
人工智能·科技·机器人·无人机·开发板·具身模型·deepoc
OAK中国_官方5 分钟前
OAK HUB:您通往视觉AI的门户!
人工智能·计算机视觉·depthai
鲨莎分不晴8 分钟前
独立学习 (IQL):大道至简还是掩耳盗铃
人工智能·深度学习·学习
audyxiao0019 分钟前
如何用Gemini“上车”自动驾驶?通过视觉问答完成自动驾驶任务
人工智能·机器学习·自动驾驶·大语言模型·多模态·gemini
free-elcmacom9 分钟前
深度学习<2>从“看单帧”到“懂故事”:视频模型的帧链推理,藏着机器读懂时间的秘密
人工智能·python·深度学习·音视频
wxdlfkj11 分钟前
从算法溯源到硬件极限:解决微小球面小角度拟合与中心定位的技术路径
人工智能·算法·机器学习
高洁0112 分钟前
基于Tensorflow库的RNN模型预测实战
人工智能·python·算法·机器学习·django
鲨莎分不晴15 分钟前
从 10 到 1000:大规模多智能体的可扩展性 (Mean Field & GNN)
人工智能·学习