深度学习 简易环境安装(不含Anaconda)

在Windows上安装深度学习环境而不使用Anaconda,下面是一个基于pip的安装指南:

1. 安装Python

确保你已经安装了Python。可以从Python官网下载Python,并在安装时勾选"Add Python to PATH"选项。

注意,Python 不要安装最新版的,如3.13,会出现不兼容现象。

2. 安装pip

通常,Python会自带pip(包管理工具)。你可以在命令提示符中运行以下命令确认pip是否已安装:

复制代码
pip --version

3. 创建虚拟环境(可选)

为了保持项目的依赖整洁,可以创建一个虚拟环境:

  1. 打开命令提示符。

  2. 安装virtualenv(如果未安装):

    pip install virtualenv

3.创建一个新的虚拟环境(以myenv为例):

复制代码
virtualenv myenv

4.激活虚拟环境:

复制代码
myenv\Scripts\activate

4. 安装深度学习框架

根据你的需求,安装TensorFlow或PyTorch。

安装TensorFlow

在命令提示符中,输入以下命令安装TensorFlow:

复制代码
pip install tensorflow
安装PyTorch

访问PyTorch官网以获取适合你的系统和配置的安装命令。通常,安装命令如下(不要在命令行运行下面的指令,要到官网上选择配置复制相应下载指令,下载时间较长):

复制代码
pip install torch torchvision torchaudio

5. 安装其他必要的库

根据需要安装其他常用库,如NumPy、Pandas、Matplotlib等:

复制代码
pip install numpy pandas matplotlib scikit-learn

6. 测试安装

在命令提示符中启动Python,测试安装是否成功:

复制代码
python

然后输入以下代码:

对于TensorFlow:

复制代码
import tensorflow as tf
print(tf.__version__)

对于PyTorch:

复制代码
import torch
print(torch.__version__)

7. 设置CUDA(可选)(注意,CUDA和cuDNN版本号需要一致,且分先后安装顺序)

在这之前,你需要安装NVIDIA显卡驱动。

如果你有NVIDIA显卡并希望使用GPU加速,需要安装CUDA和cuDNN:

  1. 安装CUDA

  2. 安装cuDNN

    • 前往 cuDNN下载页面 下载cuDNN。注意需要注册一个NVIDIA开发者账户。
    • 解压下载的cuDNN文件,并将其内容复制到CUDA安装目录中。
  3. 设置环境变量:确保将CUDA和cuDNN的bin目录添加到系统的PATH环境变量中。

相关推荐
咚咚王者4 分钟前
人工智能之编程基础 Python 入门:第五章 基本数据类型(一)
人工智能·python
说私域19 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的零售流量重构研究
人工智能·小程序·开源
Funny_AI_LAB21 分钟前
Anthropic 最新研究深度解析:大型语言模型中涌现的内省意识
人工智能·语言模型·自然语言处理
skywalk816329 分钟前
划时代的AI Agent qwen的回答和思考
人工智能
张较瘦_30 分钟前
[论文阅读] AI | 大语言模型服务系统服务级目标和系统级指标优化研究
论文阅读·人工智能·语言模型
golang学习记32 分钟前
Cursor 2.0正式发布:携自研模型Composer强势登场,不再只做「壳」
人工智能
文火冰糖的硅基工坊38 分钟前
[人工智能-大模型-97]:大模型应用层 - 随着技术的发展,软件工程与软件开发过程提效演进阶段(工具化 → 流程化 → 智能化)和未来的展望。
人工智能·软件工程
蛋王派1 小时前
本地部署DeepSeek-OCR:打造高效的PDF文字识别服务
人工智能·自然语言处理·pdf·ocr
Pocker_Spades_A1 小时前
Answer企业社区实战:零成本搭建技术问答平台,远程协作效率提升300%!
人工智能
南方的狮子先生1 小时前
【深度学习】卷积神经网络(CNN)入门:看图识物不再难!
人工智能·笔记·深度学习·神经网络·机器学习·cnn·1024程序员节