深度学习 简易环境安装(不含Anaconda)

在Windows上安装深度学习环境而不使用Anaconda,下面是一个基于pip的安装指南:

1. 安装Python

确保你已经安装了Python。可以从Python官网下载Python,并在安装时勾选"Add Python to PATH"选项。

注意,Python 不要安装最新版的,如3.13,会出现不兼容现象。

2. 安装pip

通常,Python会自带pip(包管理工具)。你可以在命令提示符中运行以下命令确认pip是否已安装:

复制代码
pip --version

3. 创建虚拟环境(可选)

为了保持项目的依赖整洁,可以创建一个虚拟环境:

  1. 打开命令提示符。

  2. 安装virtualenv(如果未安装):

    pip install virtualenv

3.创建一个新的虚拟环境(以myenv为例):

复制代码
virtualenv myenv

4.激活虚拟环境:

复制代码
myenv\Scripts\activate

4. 安装深度学习框架

根据你的需求,安装TensorFlow或PyTorch。

安装TensorFlow

在命令提示符中,输入以下命令安装TensorFlow:

复制代码
pip install tensorflow
安装PyTorch

访问PyTorch官网以获取适合你的系统和配置的安装命令。通常,安装命令如下(不要在命令行运行下面的指令,要到官网上选择配置复制相应下载指令,下载时间较长):

复制代码
pip install torch torchvision torchaudio

5. 安装其他必要的库

根据需要安装其他常用库,如NumPy、Pandas、Matplotlib等:

复制代码
pip install numpy pandas matplotlib scikit-learn

6. 测试安装

在命令提示符中启动Python,测试安装是否成功:

复制代码
python

然后输入以下代码:

对于TensorFlow:

复制代码
import tensorflow as tf
print(tf.__version__)

对于PyTorch:

复制代码
import torch
print(torch.__version__)

7. 设置CUDA(可选)(注意,CUDA和cuDNN版本号需要一致,且分先后安装顺序)

在这之前,你需要安装NVIDIA显卡驱动。

如果你有NVIDIA显卡并希望使用GPU加速,需要安装CUDA和cuDNN:

  1. 安装CUDA

  2. 安装cuDNN

    • 前往 cuDNN下载页面 下载cuDNN。注意需要注册一个NVIDIA开发者账户。
    • 解压下载的cuDNN文件,并将其内容复制到CUDA安装目录中。
  3. 设置环境变量:确保将CUDA和cuDNN的bin目录添加到系统的PATH环境变量中。

相关推荐
新知图书4 分钟前
OpenCV图像金字塔
人工智能·opencv·计算机视觉
Eric.Lee20216 分钟前
数据集-目标检测系列- 狮子 数据集 lion >> DataBall
人工智能·目标检测·目标跟踪
yanmengying6 分钟前
目标检测yolo算法
人工智能·yolo·目标检测
艾醒(AiXing-w)7 分钟前
玩转计算机视觉——按照配置部署paddleOCR(英伟达环境与昇腾300IDUO环境)
人工智能·计算机视觉
张较瘦_11 分钟前
[论文阅读] 人工智能 | Gen-n-Val:利用代理技术革新计算机视觉数据生成
论文阅读·人工智能·计算机视觉
路溪非溪11 分钟前
AI应用:计算机视觉相关技术总结
人工智能·计算机视觉
老周聊大模型22 分钟前
解剖Transformers库:从AutoClass设计到FlashAttention-2的工程实现
人工智能
r0ysue_1 小时前
03.利用显卡内核模块等特性为算法提速百倍
人工智能·python·机器学习
西猫雷婶1 小时前
pytorch基本运算-梯度运算:requires_grad_(True)和backward()
人工智能·pytorch·python·深度学习·机器学习
ONEYAC唯样1 小时前
英飞凌亮相SEMICON China 2025:以SiC、GaN技术引领低碳化与数字化未来
人工智能·神经网络·生成对抗网络