深度学习 简易环境安装(不含Anaconda)

在Windows上安装深度学习环境而不使用Anaconda,下面是一个基于pip的安装指南:

1. 安装Python

确保你已经安装了Python。可以从Python官网下载Python,并在安装时勾选"Add Python to PATH"选项。

注意,Python 不要安装最新版的,如3.13,会出现不兼容现象。

2. 安装pip

通常,Python会自带pip(包管理工具)。你可以在命令提示符中运行以下命令确认pip是否已安装:

复制代码
pip --version

3. 创建虚拟环境(可选)

为了保持项目的依赖整洁,可以创建一个虚拟环境:

  1. 打开命令提示符。

  2. 安装virtualenv(如果未安装):

    pip install virtualenv

3.创建一个新的虚拟环境(以myenv为例):

复制代码
virtualenv myenv

4.激活虚拟环境:

复制代码
myenv\Scripts\activate

4. 安装深度学习框架

根据你的需求,安装TensorFlow或PyTorch。

安装TensorFlow

在命令提示符中,输入以下命令安装TensorFlow:

复制代码
pip install tensorflow
安装PyTorch

访问PyTorch官网以获取适合你的系统和配置的安装命令。通常,安装命令如下(不要在命令行运行下面的指令,要到官网上选择配置复制相应下载指令,下载时间较长):

复制代码
pip install torch torchvision torchaudio

5. 安装其他必要的库

根据需要安装其他常用库,如NumPy、Pandas、Matplotlib等:

复制代码
pip install numpy pandas matplotlib scikit-learn

6. 测试安装

在命令提示符中启动Python,测试安装是否成功:

复制代码
python

然后输入以下代码:

对于TensorFlow:

复制代码
import tensorflow as tf
print(tf.__version__)

对于PyTorch:

复制代码
import torch
print(torch.__version__)

7. 设置CUDA(可选)(注意,CUDA和cuDNN版本号需要一致,且分先后安装顺序)

在这之前,你需要安装NVIDIA显卡驱动。

如果你有NVIDIA显卡并希望使用GPU加速,需要安装CUDA和cuDNN:

  1. 安装CUDA

  2. 安装cuDNN

    • 前往 cuDNN下载页面 下载cuDNN。注意需要注册一个NVIDIA开发者账户。
    • 解压下载的cuDNN文件,并将其内容复制到CUDA安装目录中。
  3. 设置环境变量:确保将CUDA和cuDNN的bin目录添加到系统的PATH环境变量中。

相关推荐
呆萌很5 分钟前
BGR和RGB区别
人工智能
L念安dd16 分钟前
基于 PyTorch 的轻量推荐系统框架
人工智能·pytorch·python
大模型真好玩1 小时前
大模型训练全流程实战指南工具篇(六)——OCR工具实战指南(以DeepSeek-OCR-2为例)
人工智能·langchain·deepseek
谁不学习揍谁!1 小时前
大数据可视化看板:基于电子竞技行业数据大数据可视化分析(详细源码文档等资料)
人工智能·python·信息可视化·stylus
石逸凡1 小时前
智理资产,拿下中台,攻占锦州
人工智能
Mr_Lucifer1 小时前
Duet Space:快手版的 cowork ?
人工智能·ai编程·产品
文艺倾年1 小时前
【免训练&测试时扩展】通过任务算术转移思维链能力
人工智能·分布式·算法
上海合宙LuatOS1 小时前
LuatOS核心库API——【fft 】 快速傅里叶变换
java·前端·人工智能·单片机·嵌入式硬件·物联网·机器学习
硬汉嵌入式2 小时前
CMSIS全家桶再增加个机器学习参考应用与模板软件包CMSIS-MLEK
人工智能·机器学习