flink cdc 原理解读

文章目录

快照阶段

1.根据主键或者非主键把数据分成chunk,每个并行,处理一个chunk,每个chunk,根据切分范围,先同步快照数据,然后要同步lw,到hw 期间的binglog数据,对快照数据进行修正。

增量阶段

1.统计所有chunk ,选择最小的lw作为增量binglog的起点。这里面有注意的一点,只有在已完成的快照分片范围内,并且偏移量高于 high watermark 的 binlog 事件才会被输出。

举例

假设有以下分片和对应的 high watermark:

分片 snapshot-split-0:[0, 1024),high watermark = HW0

分片 snapshot-split-1:[1024, 2048),high watermark = HW1

在这种情况下,增量数据的处理规则如下:

对于分片 snapshot-split-0,只有当 offset > HW0 且事件键在 [0, 1024) 时,增量事件才会输出。

对于分片 snapshot-split-1,只有当 offset > HW1 且事件键在 [1024, 2048) 时,增量事件才会输出。

总结

通过快照分片和 high watermark 机制,Flink CDC 实现了增量快照读取的精确控制。增量事件只有在已完成的快照分片范围内、并且偏移量超过 high watermark 时才会被输出,确保了增量数据与快照数据在顺序性和一致性上的无缝对接

问题
  • 为啥小于hw不输出,实际上小于hw,已经同步快照的阶段处理了
  • 如果遇到事务rallback,如何处理
bash 复制代码
BEGIN;
INSERT INTO orders (id, status) VALUES (1, 'NEW');
UPDATE orders SET status = 'SHIPPED' WHERE id = 1;
ROLLBACK;

在这段事务中,由于执行了 ROLLBACK,这两条操作不会影响数据库的最终状态。在 MySQL 的 binlog 日志中,这一事务会包括 BEGIN 和 ROLLBACK 标记,而不会有 COMMIT 标记。

在 Flink CDC 中的处理流程如下:

读取到 BEGIN 标记后,将该事务视为暂存状态,并缓存该事务的所有变更数据。

读取 INSERT 和 UPDATE 操作,并暂时存储这些变更记录,等待后续的事务提交。

读取到 ROLLBACK 标记后,丢弃当前事务的所有变更数据,并清除缓存,确保这两条未提交的变更不会输出到下游系统。

相关推荐
老姜洛克2 小时前
大数据-Hadoop(一)安装和部署
大数据
财经三剑客2 小时前
吉利汽车7月销量超23.7万辆 同比增长58%
大数据·汽车
猿榜3 小时前
Python基础-数据结构
大数据·数据结构·python
字节跳动数据平台3 小时前
来火山引擎「算子广场」,一键处理多模态数据
大数据
渲吧-云渲染5 小时前
从行业场景到视觉呈现:3ds Max 与 C4D 效果图的本质分野
大数据·3d
Lx3525 小时前
如何正确选择Hadoop数据压缩格式:Gzip vs LZO vs Snappy
大数据·hadoop
专注API从业者5 小时前
Python/Node.js 调用taobao API:构建实时商品详情数据采集服务
大数据·前端·数据库·node.js
极造数字6 小时前
深度剖析MES/MOM系统架构:功能模块与核心优势解析
大数据·人工智能·物联网·系统架构·制造
让头发掉下来7 小时前
Hive 创建事务表的方法
大数据·hive·hadoop
计算机毕业设计木哥8 小时前
计算机毕设大数据选题推荐 基于spark+Hadoop+python的贵州茅台股票数据分析系统【源码+文档+调试】
大数据·hadoop·python·计算机网络·spark·课程设计