【机器学习基础】激活函数

激活函数

  • [1. Sigmoid函数](#1. Sigmoid函数)
  • [2. Tanh(双曲正切)函数](#2. Tanh(双曲正切)函数)
  • [3. ReLU函数](#3. ReLU函数)
  • [4. Leaky ReLU函数](#4. Leaky ReLU函数)

1. Sigmoid函数

  • 观察导数图像
  • 在我们深度学习里面,导数是为了求参数W和B,W和B是在我们模型model确定之后,找出一组最优的W和B,使我们那个模型输入的x,得出我们Y最近我们真实结果的一个Y
  • 导数函数图像,往两边走的话,它的导数越来越接近零。如果这样的情况出现的话,出现梯度消失。我们希望它的导数是一个平稳值,不要大也不要小
  • 值落在,无穷大的时候或者无穷小的时候,它的导数就接近于零,此时W和B就不能更新了,无法找到最优的W和B。你就是你不断找不找,每天也走一走个几米几米远,事实上W和B在几千米远之外

2. Tanh(双曲正切)函数

  • 和Sigmoid类似,优缺点也类似
  • 函数图像,值域在-1到1之间,Sigmoid在0~1之间
  • 导数图像,值域么在0到1之间,Sigmoid在0~0.25之间是吧
  • 比Sigmoid快,原因比Sigmoid0.25大,Sigmoid可能训练100轮,Tanh找50轮就够

3. ReLU函数

  • 分段函数,函数图像大于0为Z,小于0为0
  • 导数图像,大于0为1,小于0为0
  • 认为解决梯度消失不太严谨,因为小于0直接是0了,上两个是接近于0,直接神经元死亡。但落在大于0确实解决梯度消失,都等于1很平缓

4. Leaky ReLU函数

  • 对ReLU的改进
  • 函数图像大于0与ReLU相同,小于0为aZ,a≠0也≠1
  • 导数图像不为0了
  • 没有完美的激活函数,只有不合适的激活函数
相关推荐
武子康20 分钟前
AI-调查研究-74-具身智能 机器人学习新突破:元学习与仿真到现实迁移的挑战与机遇
人工智能·程序人生·ai·职场和发展·系统架构·机器人·具身智能
练习两年半的工程师25 分钟前
AWS TechFest 2025: 适合使用 Agentic AI 的场景、代理(Agents)应用的平衡之道、数据战略优先级矩阵、新治理模式
人工智能·云计算·aws
Monkey的自我迭代29 分钟前
图像直方图
图像处理·人工智能·计算机视觉
Monkey的自我迭代33 分钟前
图像金字塔---图像上采样下采样
人工智能·opencv·计算机视觉
colus_SEU38 分钟前
【卷积神经网络详解与实例】4——感受野
人工智能·深度学习·计算机视觉·cnn
掘金一周43 分钟前
凌晨零点,一个TODO,差点把我们整个部门抬走 | 掘金一周 9.11
前端·人工智能·后端
Sirius Wu44 分钟前
私有化部署Ragflow的预训练模型
人工智能·python·语言模型·火山引擎
Cyan_RA91 小时前
SpringMVC 执行流程分析 详解(图解SpringMVC执行流程)
java·人工智能·后端·spring·mvc·ssm·springmvc
工藤学编程1 小时前
零基础学AI大模型之读懂AI大模型
人工智能
h_k100861 小时前
如何使用 DeepSeek 帮助自己的工作?的技术文章大纲
人工智能