【机器学习基础】激活函数

激活函数

  • [1. Sigmoid函数](#1. Sigmoid函数)
  • [2. Tanh(双曲正切)函数](#2. Tanh(双曲正切)函数)
  • [3. ReLU函数](#3. ReLU函数)
  • [4. Leaky ReLU函数](#4. Leaky ReLU函数)

1. Sigmoid函数

  • 观察导数图像
  • 在我们深度学习里面,导数是为了求参数W和B,W和B是在我们模型model确定之后,找出一组最优的W和B,使我们那个模型输入的x,得出我们Y最近我们真实结果的一个Y
  • 导数函数图像,往两边走的话,它的导数越来越接近零。如果这样的情况出现的话,出现梯度消失。我们希望它的导数是一个平稳值,不要大也不要小
  • 值落在,无穷大的时候或者无穷小的时候,它的导数就接近于零,此时W和B就不能更新了,无法找到最优的W和B。你就是你不断找不找,每天也走一走个几米几米远,事实上W和B在几千米远之外

2. Tanh(双曲正切)函数

  • 和Sigmoid类似,优缺点也类似
  • 函数图像,值域在-1到1之间,Sigmoid在0~1之间
  • 导数图像,值域么在0到1之间,Sigmoid在0~0.25之间是吧
  • 比Sigmoid快,原因比Sigmoid0.25大,Sigmoid可能训练100轮,Tanh找50轮就够

3. ReLU函数

  • 分段函数,函数图像大于0为Z,小于0为0
  • 导数图像,大于0为1,小于0为0
  • 认为解决梯度消失不太严谨,因为小于0直接是0了,上两个是接近于0,直接神经元死亡。但落在大于0确实解决梯度消失,都等于1很平缓

4. Leaky ReLU函数

  • 对ReLU的改进
  • 函数图像大于0与ReLU相同,小于0为aZ,a≠0也≠1
  • 导数图像不为0了
  • 没有完美的激活函数,只有不合适的激活函数
相关推荐
king王一帅36 分钟前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技3 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102165 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧5 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)5 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了5 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好5 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
Niuguangshuo6 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
智驱力人工智能6 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案6 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记