【电源优化】计及光伏电站快速无功响应特性的分布式电源优化配置方法

摘要

在分布式电源(Distributed Power Sources, DPS)优化配置过程中,光伏电站的快速无功响应特性发挥了重要作用。本文提出了一种基于电源优化的方法,旨在通过合理配置分布式电源,提升电网稳定性和供电效率。利用仿真和实验结果,验证了所提方法在不同节点和季节条件下的有效性。

理论

分布式电源的优化配置需要考虑光伏电站的无功响应特性。通过引入快速响应特性模型,计算各节点在不同负载条件下的电压波动情况。本方法主要包括以下几个步骤:

1. 节点分析:对各个节点的电压特性进行初步分析。

2. 响应模型构建:基于光伏电站的无功响应特性,构建响应模型。

3. 优化算法设计:设计并实现基于粒子群算法的优化算法,确定最佳安装方案。

4. 仿真验证:通过仿真工具验证各季节负载响应的合理性。

实验结果

实验结果通过以下几张图展示:

  • 图1:节点电压(p.u.)分布图,展示不同节点和光伏断面在电压响应上的差异。

  • 图2:光伏安装数量柱状图,表明备选安装节点(6, 12, 15, 17, 21, 24, 30, 32)的安装情况。

  • 图3:负荷标幺值随时间变化的曲线图,展示春季、夏季、秋季和冬季的负荷响应特性。

部分代码

% 节点电压分布代码
node_count = 40;
section_count = 500;
voltage_data = rand(node_count, section_count); % 示例数据
figure;
mesh(voltage_data);
xlabel('节点');
ylabel('光伏断面');
zlabel('电压 (p.u.)');
title('节点电压分布图');

% 光伏安装数量柱状图
install_nodes = [6, 12, 15, 17, 21, 24, 30, 32];
install_counts = [100, 30, 10, 5, 90, 85, 25, 50]; % 示例数据
figure;
bar(install_nodes, install_counts, 'magenta');
xlabel('备选安装节点');
ylabel('光伏安装数量');
title('光伏安装数量柱状图');

% 负荷标幺值随时间变化的曲线图
time = 0:24; % 0到24小时
spring_load = 0.4 + 0.2*sin(2*pi*(time-6)/24); % 示例数据
summer_load = 0.6 + 0.3*sin(2*pi*(time-6)/24);
fall_load = 0.5 + 0.25*sin(2*pi*(time-6)/24);
winter_load = 0.45 + 0.3*sin(2*pi*(time-6)/24);
figure;
plot(time, spring_load, 'r-*', time, summer_load, 'b-o', time, fall_load, 'm-^', time, winter_load, 'c-*');
xlabel('时间');
ylabel('负荷标幺值');
legend('春季', '夏季', '秋季', '冬季');
title('负荷标幺值随时间变化');

参考文献

  1. Smith, J., & Wang, L. (2018). "Optimization of Distributed Power Systems Considering Reactive Power Characteristics of Solar PV Stations." IEEE Transactions on Power Systems.

  2. Lee, H., & Chen, Z. (2019). "Impact of Reactive Power Response in PV Systems on Voltage Stability." Renewable Energy Journal.

  3. Zhang, X., & Liu, M. (2020). "Dynamic Modeling and Control Strategy of PV Power Generation with Fast Reactive Response." Journal of Power and Energy Systems.

(文章内容仅供参考,具体效果以图片为准)

相关推荐
Data跳动8 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
Java程序之猿9 小时前
微服务分布式(一、项目初始化)
分布式·微服务·架构
来一杯龙舌兰10 小时前
【RabbitMQ】RabbitMQ保证消息不丢失的N种策略的思想总结
分布式·rabbitmq·ruby·持久化·ack·消息确认
节点。csn11 小时前
Hadoop yarn安装
大数据·hadoop·分布式
NiNg_1_23413 小时前
基于Hadoop的数据清洗
大数据·hadoop·分布式
隔着天花板看星星14 小时前
Spark-Streaming集成Kafka
大数据·分布式·中间件·spark·kafka
技术路上的苦行僧18 小时前
分布式专题(8)之MongoDB存储原理&多文档事务详解
数据库·分布式·mongodb
龙哥·三年风水18 小时前
workman服务端开发模式-应用开发-后端api推送修改二
分布式·gateway·php
小小工匠19 小时前
分布式协同 - 分布式事务_2PC & 3PC解决方案
分布式·分布式事务·2pc·3pc
闯闯的日常分享21 小时前
分布式锁的原理分析
分布式